342 resultados para BLOODSUCKING BUG
Resumo:
Insect oocytes grow in close association with the ovarian follicular epithelium (OFE), which escorts the oocyte during oogenesis and is responsible for synthesis and secretion of the eggshell. We describe a transcriptome of OFE of the triatomine bug Rhodnius prolixus, a vector of Chagas disease, to increase our knowledge of the role of FE in egg development. Random clones were sequenced from a cDNA library of different stages of follicle development. The transcriptome showed high commitment to transcription, protein synthesis, and secretion. The most abundant cDNA was a secreted (S) small, proline-rich protein with maximal expression in the vitellogenic follicle, suggesting a role in oocyte maturation. We also found Rp45, a chorion protein already described, and a putative chitin-associated cuticle protein that was an eggshell component candidate. Six transcripts coding for proteins related to the unfolded-protein response (UPR) by were chosen and their expression analyzed. Surprisingly, transcripts related to UPR showed higher expression during early stages of development and downregulation during late stages, when transcripts coding for S proteins participating in chorion formation were highly expressed. Several transcripts with potential roles in oogenesis and embryo development are also discussed. We propose that intense protein synthesis at the FE results in reticulum stress (RS) and that lowering expression of a set of genes related to cell survival should lead to degeneration of follicular cells at oocyte maturation. This paradoxical suppression of UPR suggests that ovarian follicles may represent an interesting model for studying control of RS and cell survival in professional S cell types. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The bronze bug Thaumastocoris peregrinus Carpintero & Dellape (Hemiptera: Thaumastocoridae) was detected infesting Eucalyptus trees in Brazil in 2008, in the states of São Paulo, Rio Grande do Sul and Minas Gerais and in 2009 was found in the state of Espirito Santo, Mato Grosso do Sul, Rio de Janeiro and Parana. Details about geographical spread, means of introduction, impact in Eucalyptus plantations and natural enemies observed in the field are discussed.
Resumo:
Maieta guianensis Aubl. and M. poeppigii Mart. ex. Triana (Melastomataceae) are among the most common myrmecophytic plants in the Amazonian forest understory. These myrmecophytes are colonized exclusively by the ants Pheidole minutula Mayr or Crematogaster sp. and usually host two other arthropods, the spider Faiditus subflavus Exline and Levi and the recently described stilt bug Jalysus ossesae Henry. In this study, the association between J ossesae and the myrmecophytic plants M. guianensis and M. poeppigii in an upland forest area in central Amazon, Brazil, is described. The presence of the stilt bugs on M. guianensis and M. poeppigii and on plants around these myrmecophytes was recorded in five transects. The number and position of the stilt bugs on the leaf surface (upper or lower) and leaf type (with or without domatia) of these myrmecophytes, as well as their behavioral acts, were recorded. Jalysus ossesae was found only on the myrmecophytic plants M. guianensis and M. poeppigii. The stilt bug occurred at similar frequencies on M. guianensis and M. poeppigii, and the number of leaves significantly influenced the presence and number of stilt bugs on these myrmecophytes. Feeding, agonistic interaction between males, and mating were observed. Our data indicate that J. ossesae uses the myrmecophytes M. guinanensis and M. poeppigii as reproductive and foraging sites.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The aim of the present study was to analyse esterase patterns in three triatomine species of Rhodnius genus. Four loci, Est 1, Est 2, Est 3 and Est 4, were found. The corresponding enzymes were characterized as carboxylesterases (E.C. 3.1.1.1) or cholinesterases (E.C. 3.1.1.8) based on inhibitory experiments, using eserine sulphate, malathion, mercury chloride, p-chloromercuribenzoate (pCMB) and iodoacetamide. Low genetic variability was observed: Est 1, Est 2 and Est 3 were monomorphic in Rhodnius domesticus, Rhodnius robustus and Rhodnius neivai, whereas locus Est 4 was polymorphic in the first two species. The UPGMA analysis based on esterase genotypic frequencies indicated greater similarity between R. domesticus and R. robustus when compared with R. neivai. The present study expands our knowledge about genetic variability among triatomines and accords with the hypothesis that R. domesticus is a species derived from R. robustus.
Resumo:
NARANJO N, MONTERO DAV, SAENZ APONTE A. 2011. First record of infection by entomopathogenic nematodes of the grass bug Collaria scenica Stal (Hemiptera: Miridae). ENTOMOTROPICA 26(3): 117-125. The study was aimed to test the pathogenicity of Steinernema sp. and Heterorhabditis sp. in Collaria scenica. The effect of different concentrations of infective juveniles (IJ) were tested on nymphs and adults of C. scenica. For this purpose, the bugs were inoculated with 5 000 JI of each nematode species in a factorial design (3x2), and seven concentrations were tested in a JI factorial design (7x2x2). The bugs showed 100% mortality and symptoms of pathogenicity. Infection was found with both species of nematodes and penetration was assumed to be through the spiracles and anus. A higher capacity of pathogenicity was observed with Steinernema sp. Based on the results Heterorhabditis sp. and Steinernema sp. could constitute an efficient tool to control populations of C. scenica in pastures.
Resumo:
Background: Hematophagous insects digest large amounts of host hemoglobin and release heme inside their guts. In Rhodnius prolixus, hemoglobin-derived heme is detoxified by biomineralization, forming hemozoin (Hz). Recently, the involvement of the R. prolixus perimicrovillar membranes in Hz formation was demonstrated. Methodology/Principal Findings: Hz formation activity of an α-glucosidase was investigated. Hz formation was inhibited by specific α-glucosidase inhibitors. Moreover, Hz formation was sensitive to inhibition by Diethypyrocarbonate, suggesting a critical role of histidine residues in enzyme activity. Additionally, a polyclonal antibody raised against a phytophagous insect α-glucosidase was able to inhibit Hz formation. The α-glucosidase inhibitors have had no effects when used 10 h after the start of reaction, suggesting that α-glucosidase should act in the nucleation step of Hz formation. Hz formation was seen to be dependent on the substrate-binding site of enzyme, in a way that maltose, an enzyme substrate, blocks such activity. dsRNA, constructed using the sequence of α-glucosidase gene, was injected into R. prolixus females' hemocoel. Gene silencing was accomplished by reduction of both α-glucosidase and Hz formation activities. Insects were fed on plasma or hemin-enriched plasma and gene expression and activity of α-glucosidase were higher in the plasma plus hemin-fed insects. The deduced amino acid sequence of α-glucosidase shows a high similarity to the insect α-glucosidases, with critical histidine and aspartic residues conserved among the enzymes. Conclusions/Significance: Herein the Hz formation is shown to be associated to an a-glucosidase, the biochemical marker from Hemipteran perimicrovillar membranes. Usually, these enzymes catalyze the hydrolysis of glycosidic bond. The results strongly suggest that α-glucosidase is responsible for Hz nucleation in the R. prolixus midgut, indicating that the plasticity of this enzyme may play an important role in conferring fitness to hemipteran hematophagy, for instance. © 2009 Mury et al.
Resumo:
Stink bugs are among the major pests of soybean [Glycine max (L.) Merrill] worldwide. Piezodorus guildinii [Westwood] (Hemiptera: Pentatomidae) is one of the predominant pest species, causing more severe damage in many regions than other stink bugs. Its attack reduces yield and quality of the beans. Plant resistance is a valuable strategy in integrated pest management that can reduce insect populations below economic injury level. Here, we report the resistance of 17 soybean entries to P. guildinii. PI 229358, PI 274454, L1-1-01, IAC 19, PI 171451, PI 227687, IAC 100, IAC 78-2318, PI 274453, and IAC 74-2832 caused high nymphal mortality (greater than 90 %), indicating the expression of antibiosis. IAC 100, IAC 74-2832, PI 274453, and IAC 24 also increased the length of the nymphal stage of P. guildinii, showing the same mechanism of resistance. Our findings may be useful for breeding programs that focus on the resistance of soybeans to insects.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
High throughput sequencing (HTS) provides new research opportunities for work on non-model organisms, such as differential expression studies between populations exposed to different environmental conditions. However, such transcriptomic studies first require the production of a reference assembly. The choice of sampling procedure, sequencing strategy and assembly workflow is crucial. To develop a reliable reference transcriptome for Triatoma brasiliensis, the major Chagas disease vector in Northeastern Brazil, different de novo assembly protocols were generated using various datasets and software. Both 454 and Illumina sequencing technologies were applied on RNA extracted from antennae and mouthparts from single or pooled individuals. The 454 library yielded 278 Mb. Fifteen Illumina libraries were constructed and yielded nearly 360 million RNA-seq single reads and 46 million RNA-seq paired-end reads for nearly 45 Gb. For the 454 reads, we used three assemblers, Newbler, CAP3 and/or MIRA and for the Illumina reads, the Trinity assembler. Ten assembly workflows were compared using these programs separately or in combination. To compare the assemblies obtained, quantitative and qualitative criteria were used, including contig length, N50, contig number and the percentage of chimeric contigs. Completeness of the assemblies was estimated using the CEGMA pipeline. The best assembly (57,657 contigs, completeness of 80 %, < 1 % chimeric contigs) was a hybrid assembly leading to recommend the use of (1) a single individual with large representation of biological tissues, (2) merging both long reads and short paired-end Illumina reads, (3) several assemblers in order to combine the specific advantages of each.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
High Throughput Sequencing capabilities have made the process of assembling a transcriptome easier, whether or not there is a reference genome. But the quality of a transcriptome assembly must be good enough to capture the most comprehensive catalog of transcripts and their variations, and to carry out further experiments on transcriptomics. There is currently no consensus on which of the many sequencing technologies and assembly tools are the most effective. Many non-model organisms lack a reference genome to guide the transcriptome assembly. One question, therefore, is whether or not a reference-based genome assembly gives better results than de novo assembly. The blood-sucking insect Rhodnius prolixus-a vector for Chagas disease-has a reference genome. It is therefore a good model on which to compare reference-based and de novo transcriptome assemblies. In this study, we compared de novo and reference-based genome assembly strategies using three datasets (454, Illumina, 454 combined with Illumina) and various assembly software. We developed criteria to compare the resulting assemblies: the size distribution and number of transcripts, the proportion of potentially chimeric transcripts, how complete the assembly was (completeness evaluated both through CEGMA software and R. prolixus proteome fraction retrieved). Moreover, we looked for the presence of two chemosensory gene families (Odorant-Binding Proteins and Chemosensory Proteins) to validate the assembly quality. The reference-based assemblies after genome annotation were clearly better than those generated using de novo strategies alone. Reference-based strategies revealed new transcripts, including new isoforms unpredicted by automatic genome annotation. However, a combination of both de novo and reference-based strategies gave the best result, and allowed us to assemble fragmented transcripts.