982 resultados para BLOCK-COPOLYMER MICELLES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The coupling of drugs to macromolecular carriers received an important impetus from Ringsdorf's notion of polymer-drug conjugates. Several water-soluble polymers, poly(ethylene glycol), poly[N-(2-hydroxypropyl) methacrylamidel, poly(L-glutamic acid) and dextran, are studied intensively and have been utilized successfully in clinical research. The promising results arising from clinical trials with polymer-drug conjugates (e.g., paclitaxel, doxorubicin, camptothecins) have provided a firm foundation for other synthetic polymers, especially biodegradable polymers, used as drug delivery vehicles. This review discusses biodegradable polymeric micelles as an alternative drug-conjugate system. Particular focus is on A-B or B-A-B type biodegradable amphiphilic block copolymer such as polylactide, morpholine-2,5-dione derivatives and cyclic carbonates, which can form a core-shell micellar structure, with the hydrophobic drug-binding segment forming the hydrophobic core and the hydrophilic segment as a hydrated outer shell. Polymeric micelles can be designed to avoid uptake by cells of reticuloendothelial system and thus enhance their blood lifetime via the enhanced permeability and retention effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel fluorescent dye labeled H-shaped block copolymer, (PMMA-Fluor-PS)(2)-PEO-(PS-Fluor-PMMA)(2), is synthesized by the combination of atom transfer radical polymerization (ATRP) and anionic polymerization (AP). To obtain the designated structure of the copolymer, a macroinitiator, 2,2-dichloro acetyl-PEO-2,2-dichloro acetyl (DCA-PEO-DCA), was prepared from DCAC and poly(ethylene oxide). The copolymer was characterized by H-1 NMR, GPC and fluorescence spectroscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The anionic copolymerization process of styrene-buradiene (S/B) block copolymer in a closely intermeshing co-rotating twin screw extruder with butyl-lithium initiator was studied. According to the anionic copolymerization mechanism and the reactive extrusion characteristics, the mathematical models of monomer conversion, average molecular weight and fluid viscosity during the anionic copolymerization of S/B were constructed, and then the reactive extrusion process was simulated by means of the finite volume method and the uncoupled semi-implicit iterative algorithm. Finally, the influence of the feeding mixture composition on conversion was discussed. The simulated results were nearly in agreement with the experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The functionalization of monomer units in the form of macroinitiators in an orthogonal fashion yields more predictable macromolecular architectures and complex polymers. Therefore, a new there exists E-shaped amphiphilic block copolymer, (PMMA)(2)-PEO-(PS)(2)-PEO-(PMMA)(2) [where PMMA is poly(methyl methacrylate), PEO is poly (ethylene oxide), and PS is polystyrene], has been designed and successfully synthesized by the combination of atom transfer radical polymerization (ATRP) and living anionic polymerization. The synthesis of meso-2,3-dibromosuccinic acid acetate/diethylene glycol was used to initiate the polymerization of styrene via ATRP to yield linear (HO)(2)-PS2 with two active hydroxyl groups by living anionic polymerization via diphenylmethylpotassium to initiate the polymerization of ethylene oxide. Afterwards, the synthesized miktoarm-4 amphiphilic block copolymer, (HO-PEO)(2)-PS2, was esterified with 2,2-dichloroacetyl chloride to form a macroinitiator that initiated the polymerization of methyl methacrylate via ATRP to prepare the there exists E-shaped amphiphilic block copolymer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface-tethered oppositely charged weak polyelectrolyte block copolymer brushes composed of poly(2-vinyl pyridine) (P2VP) and poly(acrylic acid) (PAA) were grown from the Si wafer by atom-transfer radical polymerization. The P2VP-b-PAA brushes were prepared through hydrolysis of the second PtBA block to the corresponding acrylic acid. The P2VP-b-PAA brushes with different PAA block length were obtained. The P2VP-b-PAA brushes revealed a unique reversible wetting behavior with pH. The difference between the solubility parameters for P2VP and PAA, the changes of surface chemical composition and surface roughness, and the reversible wetting behavior illustrated that the surface rearrangement occurred during treatment of the P2VP-b-PAA brushes by aqueous solution with different pH value. The reversible properties of the P2VP-b-PAA brushes can be used to regulate the adsorption of the sulfonated PS nanoparticles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new method of reversibly moving US nanoparticles in the perpendicular direction was developed on the basis of the phase separation of block copolymer brushes. Polystyrene-b-(poly(methyl methaerylate)-co-poly(cadmium dimethacrylate)) (PS-b-(PMMA-co-PCdMA)) brushes were grafted from the silicon wafer by surface-initiated atom transfer radical polymerization (ATRP). By exposing the polymer brushes to H2S gas, PS-b-(PMNlA-co-PCdNlA) brushes were converted to polystyrene-b-(poly(methyl methacrylate) -co-poly(methacrylic acid)(CdS)) (PS-b-(PMMA-co-PMAA(CdS))) brushes, in which US nanoparticles were chemically bonded by the carboxylic groups of PMAA segment. Alternating treatment of the PS-b-(PMMA-co-PMAA(CdS)) brushes by selective solvents for the outer block (a mixed solvent of acetone and ethanol) and the inner PS block (toluene) induced perpendicular phase separation of polymer brushes, which resulted in the reversible lifting and lowering of US nanoparticles in the perpendicular direction. The extent of movement can be adjusted by the relative thickness of two blocks of the polymer brushes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have systematically studied the thin film morphologies of asymmetric polystyrene-block-poly(ethylene oxide) (PS-b-PEO) diblock copolymer subjected to solvent vapors of varying selectivity for the constituent blocks. Upon a short treatment in neutral or PS-selective vapor, the film exhibited a highly ordered array of hexagonally packed, cylindrical microdomains. In the case of PEO selective vapor annealing, such ordered cylindrical microdomains were not obtained. instead, fractal patterns on the microscale were observed and their growth processes investigated. Furthermore, hierarchical structures could be obtained if the fractal pattern was exposed to neutral or PS selective vapor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A triblock copolymer PLA-b-AP-b-PLA (PAP) of polylactide (PLA) and aniline pentamer (AP) with the unique properties of being both electroactive and biodegradable is synthesized by coupling an electroactive carboxyl-capped AP with two biodegradable bihydroxyl-capped PLAs via a condensation reaction. Three different molecule weight PAP copolymers are prepared. The PAP copolymers exhibit excellent electroactivity similar to the AP and polyaniline, which may stimulate cell proliferation and differentiation. The electrical conductivity of the PAP2 copolymer film (similar to 5 x 10(-6) S/cm) is in the semiconducting region. Transmission electron microscopic results suggest that there is microphase separation of the two block segments in the copolymer, which might contribute to the observed conductivity. The biodegradation and biocompatibility experiments in vitro prove the copolymer is biodegradable and biocompatible. Moreover, these new block copolymer shows good solubility in common organic solvents, leading to the system with excellent processibility. These biodegradable PAP copolymers with electroactive function thus possess the properties that would be potentially used as scaffold materials for neuronal or cardiovascular tissue engineering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previously, an inverted phase (the minority blocks comprising the continuum phase) was found in solution-cast block copolymer thin films. In this study, the effect of casting solvents on the formation of inverted phase has been studied. Two block copolymers, poly(styrene-b-butadiene) (SB) (M-w = 73 930 Da) and poly(styrene-b-butadiene-b-styrene) (SBS) (M-w = 140 000 Da), with comparable block lengths and equal polystyrene (PS) weight fraction (similar to30 wt %) were used. The copolymer thin films were cast from different solvents, toluene, benzene, cyclohexane, and binary mixtures of benzene and cyclohexane. Toluene and benzene are good solvents for both PS and PB, but have a preferential affinity for PS, while cyclohexane is a good solvent for PB but a Theta solvent for PS (T-Theta = 34.5 degreesC). The differential solvent affinity for PS and PB was estimated in terms of a difference between the polymer-solvent interaction parameter, chi, for each block. Under an extremely slow solvent evaporation rate, the time-dependent phase behavior during such a solution-to-film process was examined by freeze-drying the samples at different stages, corresponding to different copolymer concentrations, rho.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A paclitaxel/MPEG-PLA block copolymer conjugate was prepared in three steps: (1) hydroxyl-terminated diblock copolymer of monomethoxy-poly(ethylene glycol)-b-poly(lactide) (MPEG-PLA) was synthesized by ring-opening polymerization of L-lactide using MPEG as a maroinitiator, (2) it was converted to carboxyl-terminated MPEG-PLA by reacting with mono-i-butyl ester of diglycolic acid and subsequent deprotecting the t-butyl group with TFA; (3) the latter was reacted with paclitaxel in the presence of dicyclohexylcarbodiimide and dimethylaminopyridine. Structures of the polymers synthesized were confirmed by H-1 NMR, and their molecular weights were determined by gel permeation chromatography. The antitumor activity of the conjugate against human liver cancer H7402 cells was evaluated by MTT method. The results showed that paclitaxel can be released from the conjugate without losing cytotoxicity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the inverted phase formation and the transition from inverted to normal phase for a cylinder-forming polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) diblock copolymer in solution-cast films with thickness about 300 nm during the process of the solution concentrating by slow solvent evaporation. The cast solvent is 1, 1,2,2-tetrachloroethane (Tetra-CE), a good solvent for both blocks but having preferential affinity for the minority PMMA block. During such solution concentrating process, the phase behavior was examined by freeze-drying the samples at different evaporation time, corresponding to at different block copolymer concentrations, phi. As phi increases from similar to 0.1 % (nu/nu), the phase structure evolved from the disordered sphere phase (DS), consisting of random arranged spheres with the majority PS block as I core and the minority PMMA block as a corona, to ordered inverted phases including inverted spheres (IS), inverted cylinders (IC), and inverted hexagonally perforated lamellae (IHPL) with the minority PMMA block comprising the continuum phase, and then to the lamellar (LAM) phase with alternate layers of the two blocks, and finally to the normal cylinder (NC) phase with the majority PS block comprising the continuum phase. The solvent nature and the copolymer solution concentration are shown to be mainly responsible for the inverted phase formation and the phase transition process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new asymmetric H-shaped block copolymer (PS)(2)-PEO-(PMMA)(2) has been designed and successfully synthesized by the combination of atom transfer radical polymerization and living anionic polymerization. The synthesized 2,2-dichloro acetate-ethylene glycol (DCAG) was used to initiate the polymerization of styrene by ATRP to yield a symmetric homopolymer (Cl-PS)(2)-CHCCCCH2CH2OH with an active hydroxyl group. The chlorine was removed to yield the (PS)(2)-CHCOOCH2CH2OH ((PS)(2)-OH). The hydroxyl group of the (PS)(2)-OH, which is an active species of the living anionic polymerization, was used to initiate ethylene oxide by living anionic polymerization via DPMK to yield (PS)(2)-PEO-OH. The (PS)(2)-PEO-OH was reacted with the 2,2-dichloro acetyl chloride to yield (PS)(2)-PEO-OCCHCl2 ((PS)(2)-PEO-DCA). The asymmetric H-shaped block polymer (PS)(2)-PEO-(PMMA)(2) was prepared via ATRP of MMA at 130 degrees C using (PS)(2)-PEO-DCA as initiator and CuCl/bPy as the catalyst system. The architectures of the asymmetric H-shaped block copolymers, (PS)(2)-PEO-(PMMA)(2), were confirmed by H-1 NMR, GPC and Fr-IR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a previous study, we reported observation of the novel inverted phase (the minority blocks comprising the continuum phase) in kinetically controlled phase separating solution-cast poly(styrene-b-butadiene-b-styrene) (SBS) triblock copolymer films [Zhang et al. Macromolecules 2000, 33, 9561-7]. In this study, we adopt the same approach to investigate the formation of inverted phase in a series of solution-cast poly(styrene-b-butadiene) (SB) asymmetric diblock copolymers having nearly equal polystyrene (PS) weight fraction (about 30 wt %) but different molecular weights. The microstructure of the solution-cast block copolymer films resulting from different solvent evaporation rates, R, was inspected, from which the kinetically frozen-in phase structures at qualitatively different block copolymer concentrations and correspondingly different effective interaction parameter, chieff, can be deduced. Our result shows that there is a threshold molecular weight or range of molecular weight below which the unusual inverted phase is accessible by controlling the solvent evaporation rate. In comparing the present result with that of our previous study on the SBS triblock copolymer, we find that the formation of the inverted phase has little bearing on the chain architecture. We performed numerical calculations for the free energy of block copolymer cylinders and found that the normal phase is always preferred irrespective of the interaction parameter and molecular weight, which suggests the formation of the inverted phase to have a kinetic origin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A biodegradable two block copolymer, poly(epsilon-caprolactone)-b- poly(gamma-benzyl-L-glutamic acid) (PCL-PBLG) was synthesized successfully by ring-opening polymerization of N-carboxyanhydride of gamma-benzyl-L-glutamate (BLG-NCA) with aminophenyl-terminated PCL as a macroinitiator. The aminophenethoxyl-terminated PCL was prepared via hydrogenation of a 4-nitrophenethoxyl-teminated PCL, which was novelly obtained from the polymerization of c-caprolactone (CL) initiated by amino calcium 4-nitrobenzoxide. The structures of the block copolymer and its precursors from the initial step of PCL were confirmed and investigated by H-1 NMR, FT-IR, GPC, and FT-ICRMS analyses and DSC measurements.