839 resultados para BIOMEDICAL APPLICATIONS
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A CMOS/SOI circuit to decode PWM signals is presented as part of a body-implanted neurostimulator for visual prosthesis. Since encoded data is the sole input to the circuit, the decoding technique is based on a double-integration concept and does not require dc filtering. Nonoverlapping control phases are internally derived from the incoming pulses and a fast-settling comparator ensures good discrimination accuracy in the megahertz range. The circuit was integrated on a 2 mu m single-metal SOI fabrication process and has an effective area of 2mm(2) Typically, the measured resolution of encoding parameter a was better than 10% at 6MHz and V-DD=3.3V. Stand-by consumption is around 340 mu W. Pulses with frequencies up to 15MHz and alpha = 10% can be discriminated for V-DD spanning from 2.3V to 3.3V. Such an excellent immunity to V-DD deviations meets a design specification with respect to inherent coupling losses on transmitting data and power by means of a transcutaneous link.
Resumo:
Nanotubes have been subject of studies with regard to their ability to promote differentiation of several cells lines. Nanotubes have been used to increase the roughness of the implant surfaces and to improve bone tissue integration on dental implant. In this study TiO2 nanotube layer prepared by anodic oxidation was evaluated. Nanotube formation was carried out using Glycerol-H2O DI(50-50 v/v)+NH4F(0,5 a 1,5% and 10-30V) for 1-3 hours at 37ºC. After nanostructure formation the topography of surface was observed using field-emission-scanning-microscope (FE-SEM). Contact angle was evaluated on the anodized and non-anodized surfaces using a water contact angle goniometer in sessile drop mode with 5 μL drops. In the case of nanotube formation and no treatment surface were presented 39,1° and 75,9°, respectively. The contact angle describing the wettability of the surface is enhanced, more hydrophilic, on the nanotube surfaces, which can be advantageous for enhancing protein adsorption and cell adhesion.
Resumo:
New titanium alloys for biomedical applications have been developed primarily with the addition of Nb, Ta, Mo, and Zr, because those elements stabilize the β phase and they don’t cause cytotoxicity in the organism. The objective of this paper is to analyze the effect of molybdenum on the structure, microstructure, and selected mechanical properties of Ti-15Zr-xMo (x = 5, 10, 15, and 20 wt%) alloys. The samples were produced in an arc-melting furnace with inert argon atmosphere, and they were hot-rolled and homogenized. The samples were characterized using chemical, structural, and microstructural analysis. The mechanical analysis was made using Vickers microhardness and Young’s modulus measurements. The compositions of the alloys were sensitive to the molybdenum concentration, indicating the presence of α’+α”+β phases in the Ti-15Zr-5Mo alloy, α”+β in the Ti-15Zr-10Mo alloy, and β phase in the Ti-15Zr-15Mo and Ti-15Zr-20Mo alloys. The mechanical properties showed favorable values for biomedical application in the alloys presenting high hardness and low Young’s modulus compared with CP-Ti.
Resumo:
The Ti-15Mo-xNb system integrates a new class of titanium alloys without the presence of aluminum and vanadium, which exhibit cytotoxicity, and that have low elasticity modulus values (below 100 GPa). This occurs because these alloys have a beta structure, which is very attractive for use as biomaterials. In addition, Brazil has about 90% of the world’s resources of niobium, which is very important economically. It strategically invests in research on the development and processing of alloys containing this element. In this paper, a study of the influence of heat treatments on the structure and microstructure of the alloys of a Ti-15Mo-xNb system is presented. The results showed grain grown with heat treatment and elongated and irregular grains after lamination due to this processing. After quenching, there were no changes in the microstructure in relation to heat-treated and laminated conditions. These results corroborate the x-ray diffraction results, which showed the predominance of the β phase.
Resumo:
Alumina/alumina wear couple can lower the wear rates and thus metallic ion releasing on load bearing metallic implant materials. However, the low fracture toughness of ceramics is still a major concern. Therefore, the present study aims to process and to triboelectrochemically characterise the 5 and 10 vol.-%Al2O3 reinforced CoCrMo matrix composites. Corrosion and tribocorrosion behaviour of the composites were investigated in 8 g L−1 NaCl solution at body temperature. Corroded and worn surfaces were investigated by a field emission gun scanning electron microscope equipped with energy dispersive X-ray spectroscopy. After tribocorrosion experiments, wear rates were calculated using a profilometer. Results suggest that Al2O3 particle addition decreased the tendency of CoCrMo alloy to corrosion under both static and tribocorrosion conditions. However, no significant influence on the corrosion and wear rates was observed in composites mainly due to increased porosity and insufficient matrix/reinforcement bonding.
Resumo:
In recent years, different beta titanium alloys have been developed for biomedical applications with a combination of mechanical properties including a low Young's modulus, high strength, fatigue resistance and good ductility with excellent corrosion resistance. From this perspective, a new metastable beta titanium Ti-12Mo-3Nb alloy was developed with the replacement of both vanadium and aluminum from the traditional Ti-6Al-4V alloy. This paper presents the microstructure, mechanical properties and corrosion resistance of the Ti-12Mo-3Nb alloy heat-treated at 950 degrees C for 1 h. The material was characterized by X-ray diffraction and by scanning electron microscopy. Tensile tests were carried out at room temperature. Corrosion tests were performed using Ringer's solution at 25 degrees C. The results showed that this alloy could potentially be used for biomedical purposes due to its good mechanical properties and spontaneous passivation. (c) 2011 Elsevier B.V. All rights reserved.
Resumo:
Objectives: Over the last years, it is known that in some cases metal devices for biomedical applications present some disadvantages suggesting absorbable materials (natural or synthetic) as an alternative of choice. Here, our goal was to evaluate the biological response of a xenogenic pin, derived from bovine cortical bone, intraosseously implanted in the femur of rats. Material and methods: After 10, 14, 30 and 60 days from implantation, the animals (n = 5/period) were killed and the femurs carefully collected and dissected out under histological demands. For identifying the osteoclastogenesis level at 60 days, we performed the immunohistochemisty approach using antibody against RANKL. Results: Interestingly, our results showed that the incidence of neutrophils and leukocytes was observed only at the beginning (10 days). Clear evidences of pin degradation by host cells started at 14 days and it was more intensive at 60 days, when we detected the majority of the presence of giant multinucleated cells, which were very similar to osteoclast cells contacting the implanted pin. To check osteoclastogenesis at 60 days, we evaluated RANKL expression and it was positive for those resident multinucleated cells while a new bone deposition was verified surrounding the pins in all evaluated periods. Conclusions: Altogether, our results showed that pins from fully processed bovine bone are biocompatible and absorbable, allowing bone neoformation and it is a promissory device for biomedical applications.
Resumo:
Objects with complex shape and functions have always attracted attention and interest. The morphological diversity and complexity of naturally occurring forms and patterns have been a motivation for humans to copy and adopt ideas from Nature to achieve functional, aesthetic and social value. Biomimetics is addressed to the design and development of new synthetic materials using strategies adopted by living organisms to produce biological materials. In particular, biomineralized tissues are often sophisticate composite materials, in which the components and the interfaces between them have been defined and optimized, and that present unusual and optimal chemical-physical, morphological and mechanical properties. Moreover, biominerals are generally produced by easily traceable raw materials, in aqueous media and at room pressure and temperature, that is through cheap process and materials. Thus, it is not surprising that the idea to mimic those strategies proper of Nature has been employed in several areas of applied sciences, such as for the preparation of liquid crystals, ceramic thin films computer switches and many other advanced materials. On this basis, this PhD thesis is focused on the investigation of the interaction of biologically active ions and molecules with calcium phosphates with the aim to develop new materials for the substitution and repair of skeletal tissue, according to the following lines: I. Modified calcium phosphates. A relevant part of this PhD thesis has been addressed to study the interaction of Strontium with calcium phosphates. It was demonstrated that strontium ion can substitute for calcium into hydroxyapatite, causing appreciable structural and morphological modifications. The detailed structural analysis carried out on the nanocrystals at different strontium content provided new insight into its interaction with the structure of hydroxyapatite. At variance with the behaviour of Sr towards HA, it was found that this ion inhibits the synthesis of octacalcium phosphate. However, it can substitute for calcium in this structure up to 15 atom %, in agreement with the increase of the cell parameters observed on increasing ion concentration. A similar behaviour was found for Magnesium ion, whereas Manganese inhibits the synthesis of octacalcium phosphate and it promotes the precipitation of dicalcium phosphate dehydrate. It was also found that Strontium affects the kinetics of the reaction of hydrolysis of α-TCP. It inhibits the conversion from α-TCP to hydroxyapatite. However, the resulting apatitic phase contains significant amounts of Sr2+ suggesting that the addition of Sr2+ to the composition of α-TCP bone cements could be successfully exploited for its local delivery in bone defects. The hydrolysis of α-TCP has been investigated also in the presence of increasing amounts of gelatin: the results indicated that this biopolymer accelerates the hydrolysis reaction and promotes the conversion of α-TCP into OCP, suggesting that its addition in the composition of calcium phosphate cements can be employed to modulate the OCP/HA ratio, and as a consequence the solubility, of the set cement. II. Deposition of modified calcium phosphates on metallic substrates. Coating with a thin film of calcium phosphates is frequently applied on the surface of metallic implants in order to combine the high mechanical strength of the metal with the excellent bioactivity of the calcium phosphates surface layers. During this PhD thesis, thank to the collaboration with prof. I.N. Mihailescu, head of the Laser-Surface-Plasma Interactions Laboratory (National Institute for Lasers, Plasma and Radiation Physics – Laser Department, Bucharest) Pulsed Laser Deposition has been successfully applied to deposit thin films of Sr substituted HA on Titanium substrates. The synthesized coatings displayed a uniform Sr distribution, a granular surface and a good degree of crystallinity which slightly decreased on increasing Sr content. The results of in vitro tests carried out on osteoblast-like and osteoclast cells suggested that the presence of Sr in HA thin films can enhance the positive effect of HA coatings on osteointegration and bone regeneration, and prevent undesirable bone resorption. The possibility to introduce an active molecule in the implant site was explored using Matrix Assisted Pulsed Laser Evaporation to deposit hydroxyapatite nanocrystals at different content of alendronate, a bisphosphonate widely employed in the treatments of pathological diseases associated to bone loss. The coatings displayed a good degree of crystallinity, and the results of in vitro tests indicated that alendronate promotes proliferation and differentiation of osteoblasts even when incorporated into hydroxyapatite. III. Synthesis of drug carriers with a delayed release modulated by a calcium phosphate coating. A core-shell system for modulated drug delivery and release has been developed through optimization of the experimental conditions to cover gelatin microspheres with a uniform layer of calcium phosphate. The kinetics of the release from uncoated and coated microspheres was investigated using aspirin as a model drug. It was shown that the presence of the calcium phosphate shell delays the release of aspirin and allows to modulate its action.
Resumo:
This thesis was focused on the investigation of the linear optical properties of novel two photon absorbers for biomedical applications. Substituted imidazole and imidazopyridine derivatives, and organic dendrimers were studied as potential fluorophores for two photon bioimaging. The results obtained showed superior luminescence properties for sulphonamido imidazole derivatives compared to other substituted imidazoles. Imidazo[1,2-a]pyridines exhibited an important dependence on the substitution pattern of their luminescence properties. Substitution at imidazole ring led to a higher fluorescence yield than the substitution at the pyridine one. Bis-imidazo[1,2-a]pyridines of Donor-Acceptor-Donor type were examined. Bis-imidazo[1,2-a]pyridines dimerized at C3 position had better luminescence properties than those dimerized at C5, displaying high emission yields and important 2PA cross sections. Phosphazene-based dendrimers with fluorene branches and cationic charges on the periphery were also examined. Due to aggregation phenomena in polar solvents, the dendrimers registered a significant loss of luminescence with respect to fluorene chromophore model. An improved design of more rigid chromophores yields enhanced luminescence properties which, connected to large 2PA cross-sections, make this compounds valuable as fluorophores in bioimaging. The photophysical study of several ketocoumarine initiators, designed for the fabrication of small dimension prostheses by two photon polymerization (2PP) was carried out. The compounds showed low emission yields, indicative of a high population of the triplet excited state, which is the active state in producing the reactive species. Their efficiency in 2PP was proved by fabrication of microstructures and their biocompatibility was tested in the collaborator’s laboratory. In the frame of the 2PA photorelease of drugs, three fluorene-based dyads have been investigated. They were designed to release the gamma-aminobutyric acid via two photon induced electron transfer. The experimental data in polar solvents showed a fast electron transfer followed by an almost equally fast back electron transfer process, which indicate a poor optimization of the system.
Resumo:
For the last few decades, the interest in functional nanomaterials is steadily increasing. Especially, in biomedicine the range of possible applications of multifunctional nanoparticles including dye-labeled makers and drug loaded carrier systems is extraordinary large. The incorporation of magnetic nanoparticles allows for an additional magnetic detection and manipulation. One promising system on the way to multifunctional nanomaterials is the polyorganosiloxane system. Via polycondensation of silan monomers in aqueous dispersion polyorganosiloxane nanoparticles with particle diameter between 10 and 150 nm can be synthesized. The versatile silane chemistry allows for the design of multifunctional network structures. In this work, hydrophilic iron oxide nanoparticles could be encapsulated into the polymeric particles in a highly efficient process whereat the superparamagnetic nature of the inorganic particles was restrained. The influence of different sized particles as well as the amount of the incorporated material was investigated. Using a core-shell architecture, controlled core and surface modifications could be achieved. An effective fluorescent labeling was performed via incorporation of dye-labeled monomers. Additionally, a hydrophilic surface modification was carried out via a grafting onto process of poly(ethylene glycol). Individual core and surface functionalization was achieved and the influence of the modification on the efficiency of the magnetic loading was tested. The applicability of the multifunctional particles in biological systems was proved via cellular uptake and toxicity testings. Furthermore, biofunctionalized particles were synthesized by EDC coupling using biotin and insulin.rnrn
Resumo:
Die vorliegende Arbeit beschäftigt sich mit der Oberflächenfunktionalisierung von MnO Nanopartikeln (NP). Durch die Verwendung und Verbesserung verschiedener Polymere durch die Einbindung von Poly (Ethylen Glycol) (PEG), gelang es, die Löslichkeit dieser Nanopartikel in wässrigen Lösungen sowie in Körperflüssigkeiten zu erhöhen. Zusätzlich konnten diese Nanopartikel deutlich besser steril filtriert werden und zeigten eine erhöhte Aktivität alsrnKontrastmittel im MRT. Vorläufige Ergebnisse für die Verwendung von Silika als Schutzhülle für MnO NP werden ebenfalls kurz erläutert. Die verwendeten Polymere besaßen dabei zugängliche Aminogruppen, die eine weitere Funktionalisierung durch Bio-aktiver Gruppen ermöglichte. Der Nachweis einer erfolgreichen Bindung durch verschiedene Methoden wie SDS-PAGE, Western- und Northern Blot sowie die Verwendung unterschiedlicher FluoreszenzMessungen wird ebenfalls diskutiert. MnO NP und anderer magnetischer NP werden weiterhin auf ihr toxisches Verhalten gegenüber Caki1 und HeLa Zellen getestet. Dabei zeigte sich, dass MnO NP, im Gegensatz zu einigen Kupferoxiden, quasi nicht toxisch waren und das Proliferationsverhalten dieser Zellen quasi nicht beeinflussten. Weiterhin wurde ein Fluoreszenzfarbstoff, konkret Protoporphyrin IX, an die Oberfläche von MnO NP angebracht.Diese konnten dann erfolgreich als Kontrastmittel in der MRT verwendet werden und zeigten vielversprechende Ergebnisse für die Photodynamische Therapie. Desweiteren wird die Synthese des Antikörpers gegen p53 ausführlich erläutert. Dabei wurde genau darauf geachtet,dass dieser Antikörper dann an MnO NP gebunden werden kann.