995 resultados para BIOLOGICAL REGENERATION


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lantana camara is an environmental weed in the northern North Island of New Zealand. It is an increasingly observed problem in forest margins, coastal scrublands, dunes, plantations and island habitats, and its rapid, uncontrolled growth can create dense impenetrable thickets, suppressing vegetation and bush regeneration. Biological control options are being considered for its management. A strain of the Brazilian rust Prospodium tuberculatum was released against lantana in Australia in 2001. This rust was screened against invasive forms of the weed that occur in New Zealand and was found to be pathogenic under glasshouse conditions. A survey found no evidence that the rust occurs in New Zealand. It is concluded that P. tuberculatum is potentially a suitable agent for the biocontrol of lantana in New Zealand and further research should be carried out prior to importation of the organism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous short-term studies predict that the use of fire to manage lantana (Lantana camara) may promote its abundance. We tested this prediction by examining long-term recruitment patterns of lantana in a dry eucalypt forest in Australia from 1959 to 2007 in three fire frequency treatments: repeated annual burning, repeated triennial burning and long unburnt. The dataset was divided into two periods (1959–1972, 1974–2007) due to logging that occurred at the study site between 1972 and 1974 and the establishment of the triennial burn treatment in 1973. Our results showed that repeated burning decreased lantana regeneration under an annual burn regime in the pre- and post-logging periods and maintained low levels of regeneration in the triennial burn compartment during the post-logging period. In the absence of fire, lantana recruitment exhibited a dome-shaped response over time, with the total population peaking in 1982 before declining to 2007. In addition to fire regime, soil pH and carbon to nitrogen ratio, the density of taller conspecifics and the interaction between rainfall and fire regime were found to influence lantana regeneration change over time. The results suggest that the reported positive association between fire disturbance and abundance of lantana does not hold for all forest types and that fire should be considered as part of an integrated weed management strategy for lantana in more fire-tolerant ecosystems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The overall aim of this dissertation was to study the public's preferences for forest regeneration fellings and field afforestations, as well as to find out the relations of these preferences to landscape management instructions, to ecological healthiness, and to the contemporary theories for predicting landscape preferences. This dissertation includes four case studies in Finland, each based on the visualization of management options and surveys. Guidelines for improving the visual quality of forest regeneration and field afforestation are given based on the case studies. The results show that forest regeneration can be connected to positive images and memories when the regeneration area is small and some time has passed since the felling. Preferences may not depend only on the management alternative itself but also on the viewing distance, viewing point, and the scene in which the management options are implemented. The current Finnish forest landscape management guidelines as well as the ecological healthiness of the studied options are to a large extent compatible with the public's preferences. However, there are some discrepancies. For example, the landscape management instructions as well as ecological hypotheses suggest that the retention trees need to be left in groups, whereas people usually prefer individually located retention trees to those trees in groups. Information and psycho-evolutionary theories provide some possible explanations for people's preferences for forest regeneration and field afforestation, but the results cannot be consistently explained by these theories. The preferences of the different stakeholder groups were very similar. However, the preference ratings of the groups that make their living from forest - forest owners and forest professionals - slightly differed from those of the others. These results provide support for the assumptions that preferences are largely consistent at least within one nation, but that knowledge and a reference group may also influence preferences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Forest certification has been put forward as a means to improve the sustainability of forest management in the tropical countries, where traditional environmental regulation has been inefficient in controlling forest degradation and deforestation. In these countries, the role of communities as managers of the forest resources is rapidly increasing. However, only a fraction of tropical community forests have been certified and little is known about the impacts of certification in these systems. Two areas in Honduras where community-managed forest operations had received FSC certifications were studied. Río Cangrejal represents an area with a longer history of use, whereas Copén is a more recent forest operation. Ecological sustainability was assessed through comparing timber tree regeneration and floristic composition between certified, conventionally managed and natural forests. Data on woody vegetation and environmental conditions was collected within logging gaps and natural treefall gaps. The regeneration success of shade-tolerant timber tree species was lower in certified than in conventionally managed forests in Río Cangrejal. Furthermore, the floristic composition was more natural-like in the conventionally managed than the certified forests. However, the environmental conditions indicated reduced logging disturbance in the certified forests. Data from Copén demonstrated that the regeneration success of light-demanding timber species was higher in the certified than the unlogged forests. In spite of this, the most valuable timber species Swietenia macrophylla was not regenerating successfully in the certified forests, due to rapid gap closure. The results indicate that pre-certification loggings and forest fragmentation may have a stronger impact on forest regeneration than current, certified management practices. The focus in community forests under low-intensive logging should be directed toward landscape connectivity and the restoration of degraded timber species, instead of reducing mechanical logging damage. Such actions are dependent on better recognition of resource rights, and improving the status of small Southern producers in the markets of certified wood products.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To determine the effects of carbon ion beams with five different linear energy transfer (LET) values on adventitious shoots from in vitro leaf explants of Saintpaulia ionahta Mauve cultivar with regard to tissue increase, shoots differentiation and morphology changes in the shoots. Materials and methods: In vitro leaf explant samples were irradiated with carbon ion beams with LET values in the range of 31 similar to 151 keV/mu m or 8 MeV of X-rays (LET 0.2 keV/mu m) at different doses. Fresh weight increase, surviving fraction and percentage of the explants with regenerated malformed shoots in all the irradiated leaf explants were statistically analysed. Results: The fresh weight increase (FWI) and surviving fraction (SF) decreased dramatically with increasing LET at the same doses. In addition, malformed shoots, including curliness, carnification, nicks and chlorophyll deficiency, occurred in both carbon ion beam and X-ray irradiations. The induction frequency with the former, however, was far more than that with the X-rays. Conclusions: This work demonstrated the LET dependence of the relative biological effectiveness (RBE) of tissue culture of Saintpaulia ionahta according to 50% FWI and 50% SF. After irradiating leaf explants with 5 Gy of a 221 MeV carbon ion beam having a LET value of 96 keV/mu m throughout the sample, a chlorophyll-deficient (CD) mutant, which could transmit the character of chlorophyll deficiency to its progeny through three continuous tissue culture cycles, and plantlets with other malformations were obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of 960 MeV carbon ion beam and 8 MeV X-ray irradiation on adventitious shoots from in vitro leaf explants of two different Saintpaulia ionahta (Mauve and Indikon) cultivars were studied with regard to tissue increase, shoots differentiation and morphology changes in the shoots. The experimental results showed that the survival fraction of shoot formation for the Mauve and Indikon irradiated with the carbon ion beam at 20 Gy were 0.715 and 0.600, respectively, while those for both the cultivars exposed to the Xray irradiation at the same dose were 1.000. Relative biological effectiveness (RBE) of Mauve with respect to X-ray was about two. Secondly, the percentage of regenerating explants with malformed shoots in all Mauve regenerating explants irradiated with carbon ion beam at 20 Gy accounted for 49.6%, while that irradiated with the same dose of X-ray irradiation was only 4.7%; as for Saintpatdia ionahta Indikon irradiated with 20 Gy carbon ion beam, the percentage was 43.3%, which was higher than that of X-ray irradiation. Last, many chlorophyll deficient and other varieties of mutants were obtained in this study. Based on the results above, it can be concluded that the effect of mutation induction by carbon ion beam irradiation on the leaf explants of Saintpaulia ionahta is better than that by X-ray irradiation; and the optimal mutagenic dose varies from 20 Gy to 25 Gy for carbon ion beam irradiation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The folate pathway plays a crucial role in the regeneration and repair of the adult CNS after injury. Here, we have shown in rodents that such repair occurs at least in part through DNA methylation. In animals with combined spinal cord and sciatic nerve injury, folate-mediated CNS axon regeneration was found to depend on injury-related induction of the high-affinity folate receptor 1 (Folr1). The activity of folate was dependent on its activation by the enzyme dihydrofolate reductase (Dhfr) and a functional methylation cycle. The effect of folate on the regeneration of afferent spinal neurons was biphasic and dose dependent and correlated closely over its dose range with global and gene-specific DNA methylation and with expression of both the folate receptor Folr1 and the de novo DNA methyltransferases. These data implicate an epigenetic mechanism in CNS repair. Folic acid and possibly other nontoxic dietary methyl donors may therefore be useful in clinical interventions to promote brain and spinal cord healing. If indeed the benefit of folate is mediated by epigenetic mechanisms that promote endogenous axonal regeneration, this provides possible avenues for new pharmacologic approaches to treating CNS injuries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ostrea edulis was extremely rare in the wild in Strangford Lough from the early 1900s until renewed spatfall was observed at a number of sites in the 1990s. A monitoring programme was undertaken to investigate the presence and distribution of planktonic oyster larvae at nine sites around the lough between June and September in 1997 and 1998 as a precursor to studies of spatfall patterns. Larval densities at sites in the northern basin of the lough were significantly higher than those in the southern basin where larvae were lacking or in low numbers. Densities and sizes of oyster larvae showed significant temporal variation suggesting pulsed larval release. Larval densities also showed significant spatial variation with higher densities at sites closer to commercial stocks pointing to these as the main source of oyster larvae. This hypothesis was supported during a larval flux study over a complete tidal cycle which indicated a 90% net tidal movement of O. edulis larvae from the entrance of the bay where commercial stocks were held to the main body of the lough. Thus the maintenance of dense commercial stocks of flat oysters may provide the key to the redevelopment of native oyster beds in Strangford Lough and elsewhere by providing an initial broodstock nucleus from which larvae can be exported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bioactive glasses and glass-ceramics are a class of third generation biomaterials which elicit a special response on their surface when in contact with biological fluids, leading to strong bonding to living tissues. The purpose of the present study was to develop diopside based alkali-free bioactive glasses in order to achieve good sintering behaviour, high bioactivity, and a dissolution/ degradation rates compatible with the target applications in bone regeneration and tissue engineering. Another aim was to understand the structure-property relationships in the investigated bioactive glasses. In this quest, various glass compositions within the Diopside (CaMgSi2O6) – Fluorapatite (Ca5(PO4)3F) – Tricalcium phosphate (3CaO•P2O5) system have been investigated. All the glasses were prepared by melt-quenching technique and characterized by a wide array of complementary characterization techniques. The glass-ceramics were produced by sintering of glass powders compacts followed by a suitable heat treatment to promote the nucleation and crystallization phenomena. Furthermore, selected parent glass compositions were doped with several functional ions and an attempt to understand their effects on the glass structure, sintering ability and on the in vitro bio-degradation and biomineralization behaviours of the glasses was made. The effects of the same variables on the devitrification (nucleation and crystallization) behaviour of glasses to form bioactive glass-ceramics were also investigated. Some of the glasses exhibited high bio-mineralization rates, expressed by the formation of a surface hydroxyapatite layer within 1–12 h of immersion in a simulated body fluid (SBF) solution. All the glasses showed relatively lower degradation rates in comparison to that of 45S5 Bioglass®. Some of the glasses showed very good in vitro behaviour and the glasses co-doped with zinc and strontium showed an in vitro dose dependent behaviour. The as-designed bioactive glasses and glass–ceramic materials are excellent candidates for applications in bone regeneration and for the fabrication of scaffolds for tissue engineering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cardiovascular diseases and in particular heart failure are major causes of morbidity and mortality in the Western world. Recently, the notion of promoting cardiac regeneration as a means to replace lost cardiomyocytes in the damaged heart has engendered considerable research interest. These studies envisage the utilization of both endogenous and exogenous cellular populations, which undergo highly specialized cell fate transitions to promote cardiomyocyte replenishment. Such transitions are under the control of regenerative gene regulatory networks, which are enacted by the integrated execution of specific transcriptional programs. In this context, it is emerging that the non-coding portion of the genome is dynamically transcribed generating thousands of regulatory small and long non-coding RNAs, which are central orchestrators of these networks. In this review, we discuss more particularly the biological roles of two classes of regulatory non-coding RNAs, i.e. microRNAs and long non-coding RNAs, with a particular emphasis on their known and putative roles in cardiac homeostasis and regeneration. Indeed, manipulating non-coding RNA-mediated regulatory networks could provide keys to unlock the dormant potential of the mammalian heart to regenerate. This should ultimately improve the effectiveness of current regenerative strategies and discover new avenues for repair. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The molecular events after spinal cord injury that lead to the establishment of a permissive environment and epimorphic regeneration remain unclear. Two molecular pathway regulators that may converge to create a spinal cord regeneration-permissive environment in the urodele are retinoic acid (RA) and microRNAs (miRNAs). Recent evidence suggests that RARβ-mediated signaling is necessary for tail and caudal spinal cord regeneration in the adult newt. MicroRNAs are attractive candidates as mediators of retinoid signaling during regeneration, as their pleiotropic effects are vital in situations where global changes in gene expression are required. Thus, the overall aim of this thesis was to determine if miRNAs are involved in tail and caudal spinal cord regeneration in the adult newt, and if they act as regulators and/or effectors of retinoid signaling during this process. I have demonstrated here, for the first time, that multiple miRNAs are dysregulated in response to spinal cord injury in the adult newt, as well as in response to inhibition of retinoid signaling. Two of these miRNAs, miR-133a and miR-1, appear to target RARβ2 transcripts both in vivo and in vitro. Inhibition of RA signaling via RARβ with a selective antagonist, LE135, alters the pattern of expression of these miRNAs, which leads to an inhibition of tail regeneration. These data are indicative of a negative feed back loop, albeit potentially an indirect one. I also aimed to examine which miRNAs are affected by inhibiting RA synthesis during regeneration, and provided a long list of miRNAs that are dysregulated. These data provide the foundation for future studies on the putative roles of these miRNAs, as well as their function in retinoid signaling. Overall, these studies provide the first evidence for a role for miRNAs as mediators of retinoid signaling during caudal spinal cord regeneration in any system.