954 resultados para BETA-D-MALTOSIDE
Resumo:
GDP-L-fucose:beta-D-galactoside alpha-2-L-fucosyltransferase (EC 2.4.1.69) is a key enzyme in the biosynthesis of fucosylated type 1 and 2 lactoseries structures, such as Lewis b and the H type 2 and Lewis Y, respectively, that are accumulated in colon adenocarcinoma. Analysis of the mRNA transcript level for the human H gene-encoded beta-D-galactoside alpha-2-L-fucosyltransferase revealed 40- and 340-fold increases in the mRNA levels in all adenocarcinomas and tumor cell lines, respectively, compared to normal colon mucosa where a low level of mRNA transcript was detected. A variable increase in mRNA transcript levels was observed in 50% of adenomatous polyps. Nucleotide sequence analysis of the protein coding region of the cDNAs derived from normal colon, adenoma, and colon adenocarcinoma revealed 100% homology, suggesting that there are no tumor-associated allelic variations within the H beta-D-galactoside alpha-2-L-fucosyltransferase cDNA. These results suggest that beta-D-galactoside alpha-2-L-fucosyltransferase expression highly correlates with malignant progression of colon adenocarcinoma.
Resumo:
n-Octyl-beta-D-glueopyranoside (OG) is a non-ionic glycolipid, which is used widely in biotechnical and biochemical applications. All-atom molecular dynamics simulations from two different initial coordinates and velocities in explicit solvent have been performed to characterize the structural behaviour of an OG aggregate at equilibrium conditions. Geometric packing properties determined from the simulations and small angle neutron scattering experiment state that OG micelles are more likely to exist in a non-spherical shape, even at the concentration range near to the critical micelle concentration (0.025 M). Despite few large deviations in the principal moment of inertia ratios, the average micelle shape calculated from both simulations is a prolate ellipsoid. The deviations at these time scales are presumably the temporary shape change of a micelle. However, the size of the micelle and the accessible surface areas were constant during the simulations with the micelle surface being rough and partially elongated. Radial distribution functions computed for the hydroxyl oxygen atoms of an OG show sharper peaks at a minimum van der Waals contact distance than the acetal oxygen, ring oxygen, and anomeric carbon atoms. This result indicates that these atoms are pointed outwards at the hydrophilic/hydrophobic interface, form hydrogen bonds with the water molecules, and thus hydrate the micelle surface effectively. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Herein, one water-soluble functionalized ionic liquid (IL), 1-butyl-3-methylimidazolium dodecanesulfonate (BAS), was designed, investigated and successfully applied to microchip micellar electrokinetic chromatography (MEKC) construction. It possessed the properties of both IL and surfactant. A fairly stable pH value similar to 7.4, which was fit to pH values of general biological buffers, was nicely placed at the optimum concentration of 20 mM BAS solution. While applying BAS solution as running buffer in poly(dimethylsiloxane) (PDMS) microfluidic systems, significantly enhanced electroosmotic flow (8-fold) and resolutions between analytes were obtained than that using other supporting electrolytes or surfactants.
Resumo:
Based on the dimer-monomer equilibrium movement of the fluorescent dye Pyronin Y (PY), a rapid, simple, highly sensitive, label-free method for protein detection was developed by microchip electrophoresis with LIF detection. PY formed a nonfluorescent dimer induced by the premicellar aggregation of an anionic surfactant, SDS, however, the fluorescence intensity of the system increased dramatically when proteins such as BSA, bovine hemoglobin, cytochrome c, and trypsin were added to the solution due to the transition of dimer to fluorescent monomer. Furthermore, 1-ethyl-3-methylimidazolium tetrafluoroborate (EMImBF(4)) instead of PBS was applied as running buffers in microchip electrophoresis.
Resumo:
"Fluidic leakage" caused by vacuum force at the reversible sealing poly(dimethylsiloxane) (PDMS) interfaces was converted to one useable avenue, which led to formation of highly ordered surfactant microdroplets functionalized with ionic liquids (ILs). Vacuum force is the prerequisite to lead constant microsolutions to diffuse to the PDMS interfaces. Imidazolium ions of ILs rendered structural rearrangement of the surfactant aggregates and the ordered droplets formation.
Resumo:
1H NMR spin-lattice relaxation time (T1) measurements have been carried out with various sugars, viz. methyl alpha-D-glucopyranoside (alpha-MeGluP), methyl beta-D-lucopyranoside (beta-MeGluP), methyl alpha--annopyranoside (alpha-MeManP), maltose (4-O-alpha-D-glucopyranosyl--glucose), nigerose (3-O-alpha-D-glucopyranosyl-D-glucose), p-nitrophenyl alpha-maltoside (PNP-alpha-maltoside) and p-nitrophenyl beta-maltoside (PNP-beta-maltoside) to determine the distances of sugar protons from Mn2+ in concanavalin A (Con A). With a rotational correlation time of 1.58 x 10(-10) s determined, distances were calculated using Solomon-Bloembergen equation. The data obtained indicated differences in disposition of different groups in the binding site of Con A. An average value of about 10 A was obtained for the distances of sugar protons from Mn2+ in Con A. In the case of mono and disaccharides, the non-reducing end sugar unit was found to be closer to Mn2+ than the reducing end one.
Resumo:
A .beta.-glucosidase and an endocellulase were purified from the culture filtrates of a thermophilic cellulolytic fungus Humicola insolens. Both the preparations were homogeneous by PAGE, ultracentrifugation and gel filtration (Mr 45,000). Ouchterlony immunodiffusion showed complete cross reactivity between the antibodies and the two enzyme antigens, indicating the presence of a common epitope on the two enzyme proteins. The two enzymes, however, differ in their amino acid composition and their substrate specificity. .beta.-Glucosidase acts on p-nitrophenyl .beta.-D-glucopyranoside and hydrolyses cellulose to release mainly glucose and small amounts of cellobiose from the non-reducing end. On the other hand, endocellulase hydrolyses cellulose to release cellopentaose, cellotetraose, cellotriose along with cellobiose and glucose and also hydrolyses larch wood xylan.
Resumo:
Hydrolysis of p-nitrophenyl-beta-D-glucoside by the beta-glucosidase of a thermophilic and cellulolytic fungus, Humicola insolens was stimulated by two-fold in the presence of high concentrations of beta-mercaptoethanol. This enzyme did not have any free sulfhydryl groups and high concentrations of beta-mercaptoethanol (5% v/v) reduced all of the three disulfide bonds present in the enzyme. In contrast, the hydrolysis of cellobiose and cellulose polymers was inhibited by 50% under the same conditions. Sodium dodecyl sulfate (1% w/v) even in combination with beta-mercaptoethanol did not show any significant effects on this enzyme. These unusual properties suggest that this enzyme may be of significant importance for understanding the structure of the enzyme.
Resumo:
Four different beta-galactosidases (previously named BbgI, BbgII, BbgIII and BbgIV) from Bifidobacterium bifidum NCIMB41171 were overexpressed in Escherichia coli, purified to homogeneity and their biochemical properties and substrate preferences comparatively analysed. BbgI was forming a hexameric protein complex of 875 kDa, whereas BbgII, BbgIII and BbgIV were dimers with native molecular masses of 178, 351 and 248 kDa, respectively. BbgII was the only enzyme that preferred acidic conditions for optimal activity (pH 5.4-5.8), whereas the other three exhibited optima in more neutral pH ranges (pH 6.4-6.8). Na+ and/or K+ ions were prerequisite for BbgI and BbgIV activity in Bis-Tris-buffered solutions, whereas Mg++ was strongly activating them in phosphate-buffered solutions. BbgII and BbgIII were slightly influenced from the presence or absence of cations, with Mg++, Mn++ and Ca++ ions exerting the most positive effect. Determination of the specificity constants (k(cat)/K-m) clearly indicated that BbgI (6.11 x 10(4) s(-1) M-1), BbgIII (2.36 x 10(4) s(-1) M-1) and especially BbgIV (4.01 x 10(5) s(-1) M-1) are highly specialised in the hydrolysis of lactose, whereas BbgII is more specific for beta-D-(1 -> 6) galactobiose (5.59 x 10(4) s(-1) M-1) than lactose (1.48 x 10(3) s(-1) M-1). Activity measurements towards other substrates (e. g. beta-D-(1 -> 6) galactobiose, beta-D-(1 -> 4) galactobiose, beta-D-(1 -> 4) galactosyllactose, N-acetyllactosamine, etc.) indicated that the beta-galactosidases were complementary to each other by hydrolysing different substrates and thus contributing in a different way to the bacterial physiology.
Resumo:
Incorporation of a bicyclic cytosine analogue, 3-beta-D-(2'-deoxyribofuranosyl)7,8- dihydropyrido[ 2,3-d] pyrimidine, into synthetic DNA duplexes results in a greatly enhanced thermal stability ( 3 - 4 degrees C per modification) compared to the corresponding unmodified duplex.
Resumo:
Botryosphaeran, a (1 -> 3; 1 -> 6)-beta-D-glucan produced by Botryosphaeria rhodina, and laminarin were hydrolysed by two fungal beta-glucanases predominantly of the 1,3-type produced by B. rhodina and Trichoderma harzianum Rifai grown on botryosphaeran as sole carbon source. Both beta-glucanase preparations presented different modes of attack on botryosphaeran and laminarin. Laminarin was hydrolysed to the extent of similar to 50% in 1 hand 100% within 24 h, and its hydrolysis products were mainly glucose and gentiobiose, and lesser amounts of laminaribiose and oligosaccharides of DP 3-4 during the early stages of hydrolysis, while botryosphaeran 'yielded mainly glucose and gentiobiose with some trisaccharide, but no laminaribiose or tetrasaccharide when hydrolysed by the T. harzianum enzyme. By contrast, B. rhodina beta-1,3-glucanases produced predominantly glucose during all stages of botryosphaeran hydrolysis. Some physicochemical properties of the 1,3- and 1,6-beta-glucanases, and beta-glucosidases contained in the two fungal P-glucanase preparations are also described for the first time. (c) 2006 Elsevier Ltd. All rights reserved.