890 resultados para BENDING
Resumo:
Investigation of the fracture mode for hard and soft wheat endosperm was aimed at gaining a better understanding of the fragmentation process. Fracture mechanical characterization was based on the three-point bending test which enables stable crack propagation to take place in small rectangular pieces of wheat endosperm. The crack length can be measured in situ by using an optical microscope with light illumination from the side of the specimen or from the back of the specimen. Two new techniques were developed and used to estimate the fracture toughness of wheat endosperm, a geometric approach and a compliance method. The geometric approach gave average fracture toughness values of 53.10 and 27.0 J m(-2) for hard and soft endosperm, respectively. Fracture toughness estimated using the compliance method gave values of 49.9 and 29.7 J m(-2) for hard and soft endosperm, respectively. Compressive properties of the endosperm in three mutually perpendicular axes revealed that the hard and soft endosperms are isotropic composites. Scanning electron microscopy (SEM) observation of the fracture surfaces and the energy-time curves of loading-unloading cycles revealed that there was a plastic flow during crack propagation for both the hard and soft endosperms, and confirmed that the fracture mode is significantly related to the adhesion level between starch granules and the protein matrix.
Resumo:
We report new paleomagnetic and geochronological data from Ediacaran rift-drift carbonates in the Paraguai belt at the southern end of the suture zone between the Amazon craton and the Sao Francisco and Rio de Plata cratons, South America. Early thrusting resulted in remagnetization ca. 528 +/- 36 Ma or later; the mean age is established by (40)Ar/(39)Ar encapsulation dating of mixed authigenic and detrital illite from remagnetized carbonates from the unmetamorphosed fold-thrust belt. This remagnetization overlaps with a 525 Ma Gondwana reference pole. Metamorphic illite from the slate belt yields (40)Ar/(39)Ar ages of 496-484 Ma, the timing of peak regional metamorphism. Oroclinal bending of the Paraguai belt was caused by a 90 degrees clockwise rotation of the east-west limb after ca. 528 Ma, probably reflecting the irregular margin of the southeast Amazon craton. The age of the Paraguai belt overlaps with that of the Pampean orogeny farther south along the western margin of the Rio de Plata craton, suggesting a coeval closure for the Clymene ocean separating the Amazon craton from the Sao Francisco and Rio de Plata cratons.
Resumo:
Vid trädfällning med motorsåg sparar man en så kallad brytmån som skall fungera som ett gång¬järn när trädet fälls. Om brytmånen går av tidigt finns en risk att trädet faller okontrolle¬rat. De rekommendationer som finns säger att brytmånens bredd skall göras proportionell mot trädets diameter. Genom att teoretiskt och praktiskt undersöka vilka krafter brytmånen utsätts för och vad den håller för har det varit möjligt att dra vissa slutsatser om hur en bra brytmån skall se ut. Ett viktigt resultat är att en bred brytmån (över 30-40 mm) är mycket trög att böja och inte fungerar i det avseendet att den går av redan vid små böjningar. Teoretiska be¬räkningar och praktiska försök visar att en relativt smal brytmån håller för belastningen vid rakt motlut även på stora träd. Som ny rekommendationen föreslås att brytmånens bredd inte bör vara mer än 30 mm. Av försöken kan man också dra slutsatsen att frusen ved är stel och brister tidigt, varför svår¬fällda träd inte bör fällas när veden är fryst.A felling hinge is used when felling trees by help of chain saw. If the hinge breaks early in the fall of the tree there is a great risk that the tree will fall without control. Present recommenda¬tions in Sweden say that the thickness of the felling hinge shall be made in proportion to the stem diameter. By use of theoretical and practical examinations of the forces stressing the felling hinge, and the strength of the wood itself, it has been possible to draw conclusions regarding the correct design of a felling hinge. One important result is that a thick felling hinge (over 30-40 mm) is very hard to bend and does not work well as it looses most of its strength already at a small forward bending angel. Theoretical calculations and practical tests show that a relatively narrow felling hinge will manage very well the forces when felling trees with lean opposite to the felling direction even for large trees. Our new recommendation is that the thickness of the felling hinge in normal Swedish conditions should not exceed 30 mm. Through the studies it can also be seen that frozen, brittle wood breaks at small bending angels. For that reason particularly difficult trees not should be felled when the wood is frozen.
Resumo:
The aim of this study was to analyze the effect of successive TIG (tungsten inert gas) welding repairs on the reverse bending fatigue strength of AISI 4130 steel, which is widely used in components critical to the flight-safety. In order to simulate the abrupt maneuvers, wind bursts, motor vibration and helixes efforts, which generate cyclic bending loadings at the welded joints of a specific aircraft component called motor cradle, experimental reverse bending fatigue tests were carried out on specimens made from hot-rolled steel plate, 1.10 mm (0.043 in) thick, by mean of a SCHENK PWS equipment, with load ratio R = -1, under constant amplitude, at 30 Hz frequency and room temperature. It was observed that the bending fatigue strength decreases after the TIG (Tungsten Inert Gas) welding process application on AISI 4130 steel, with subsequent decrease due to re-welding sequence as well. Microstructural analyses and microhardness measurements on the base material, heat-affected zone (HAZ) and weld metal, as well as the effects of the weld bead geometry on the obtained results, have complemented this study.
Resumo:
In this work, are discussed two formulations of the boundary element method - BEM to perform linear bending analysis of plates reinforced by beams. Both formulations are based on the Kirchhoffs hypothesis and they are obtained from the reciprocity theorem applied to zoned plates, where each sub-region defines a beam or a stab. In the first model the problem values are defined along the interfaces and the external boundary. Then, in order to reduce the number of degrees of freedom kinematics hypothesis are assumed along the beam cross section, leading to a second formulation where the collocation points are defined along the beam skeleton, instead of being placed on interfaces. on these formulations no approximation of the generalized forces along the interface is required. Moreover, compatibility and equilibrium conditions along the interface are automatically imposed by the integral equation. Thus, these formulations require less approximation and the total number of the degrees of freedom is reduced. In the numerical examples are discussed the differences between these two BEM formulations, comparing as well the results to a well-known finite element code.
Resumo:
In this work, the plate bending formulation of the boundary element method - BEM, based on the Reissner's hypothesis, is extended to the analysis of plates reinforced by beams taking into account the membrane effects. The formulation is derived by assuming a zoned body where each sub-region defines a beam or a slab and all of them are represented by a chosen reference surface. Equilibrium and compatibility conditions are automatically imposed by the integral equations, which treat this composed structure as a single body. In order to reduce the number of degrees of freedom, the problem values defined on the interfaces are written in terms of their values on the beam axis. Initially are derived separated equations for the bending and stretching problems, but in the final system of equations the two problems are coupled and can not be treated separately. Finally are presented some numerical examples whose analytical results are known to show the accuracy of the proposed model.
Resumo:
In this work, a boundary element formulation to analyse plates reinforced by rectangular beams, with columns defined in the domain is proposed. The model is based on Kirchhoff hypothesis and the beams are not required to be displayed over the plate surface, therefore eccentricity effects are taken into account. The presented boundary element method formulation is derived by applying the reciprocity theorem to zoned plates, where beams are treated as thin sub-regions with larger rigidities. The integral representations derived for this complex structural element consider the bending and stretching effects of both structural elements working together. The standard equilibrium and compatibility conditions along interface are naturally imposed, being the bending tractions eliminated along interfaces. The in-plane tractions and the bending and in-plane displacements are approximated along the beam width, reducing the number of degrees of freedom. The columns are introduced into the formulation by considering domain points where tractions can be prescribed. Some examples are then shown to illustrate the accuracy of the formulation, comparing the obtained results with other numerical solutions.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
High critical temperature superconductors are evolving from a scientific research subject into large-scale application devices. In order to meet this development demand they must withstand high current capacity under mechanical loads arising from thermal contraction during cooling from room temperature down to operating temperature (usually 77 K) and due to the electromagnetic forces generated by the current and the induced magnetic field. Among the HTS materials, the Bi2Sr2Ca2Cu3Ox, compound imbedded in an Ag/AgMg sheath has shown the best results in terms of critical current at 77 K and tolerance against mechanical strain. Aiming to evaluate the influence of thermal stress induced by a number of thermal shock cycles we have evaluated the V-I characteristic curves of samples mounted onto semicircular holders with different curvature radius (9.75 to 44.5 mm). The most deformed sample (epsilon = 1.08%) showed the largest reduction of critical current (40%) compared to the undeformed sample and the highest sensitivity to thermal stress (I-c/I-c0 = 0.5). The V-I characteristic curves were also fitted by a potential curve displaying n-exponents varying from 20 down to 10 between the initial and last thermal shock cycle.
Resumo:
In this work, the plate bending formulation of the boundary element method (BEM), based on the Reissner's hypothesis, is extended to the analysis of plates reinforced by rectangular beams. This composed structure is modelled by a zoned plate, being the beams represented by narrow sub-regions with larger thickness. The integral equations are derived by applying the weighted residual method to each sub-region, and summing them to get the equation for the whole plate. Equilibrium and compatibility conditions are automatically imposed by the integral equations, which treat this composed structure as a single body. In order to decrease the number of degrees of freedom, some approximations are considered for both displacements and tractions along the beam width. The accuracy of the proposed model is illustrated by simple examples whose exact solution are known as well as by more complex examples whose numerical results are compared with a well-known finite element code.
Resumo:
Cold-formed steel shapes have been widely employed in steel construction, where they frequently offer a lower cost solution than do traditional laminated shapes. A classic application of cold-formed steel shapes is purlins in the roof panel of industrial buildings, connected to the roof panel by means of screws. The combined effect of these two elements has been the subject of investigations in some countries. Design criteria were included in the AISI Code in 1991 and 1996. This paper presents and discusses the results obtained from bending tests carried out on shapes commonly used in Brazil, i.e., the channel and the simple lipped channel, Tests were carried out on double shapes with 4.5 and 6.0 meter spans, which were subjected to concentrated loads and braced against each other on the supports and at intermediary points in three different load situations. The panel shape was also analyzed experimentally, simulating the action of wind by means of a vacuum box designed specifically for this purpose. The test results were then compared to those obtained through the theoretical analysis, enabling us to extract important information upon which to base proposed design criteria for the new Brazilian code.
Resumo:
Cold-formed steel members are subject to failure caused by buckling, normally under loads smaller than those corresponding to partial or total yielding of the cross section. The buckling of members in bending can be classified as local or global, and the occurrence of one or the other type is expected by the members' geometric characteristics and by the constraints and load conditions. One of the local instability modes that can characterize a member's failure is distortional buckling of the cross section occurring on its own plane and involving lateral displacements and rotations. This paper presents and discusses the procedures and results obtained from experimental tests of cold-formed steel members under bending. Forty-eight beams were carried out on members in simple lipped channel, in pairs, with 6-meter spans and loads applied by concentrated forces at every 1/3 of the span. The thickness, width and dimensions, of the stiffeners were chosen so that the instability by distortion buckling of the cross section was the principal failure mode expected. The experimental results are compared with the obtained results by using the direct strength method.
Resumo:
Many prokaryotic nucleoid proteins bend DNA and form extended helical protein-DNA fibers rather than condensed structures. On the other hand, it is known that such proteins (such as bacterial HU) strongly promote DNA condensation by macromolecular crowding. Using theoretical arguments, we show that this synergy is a simple consequence of the larger diameter and lower net charge density of the protein-DNA filaments as compared to naked DNA, and hence, should be quite general. To illustrate this generality, we use light-scattering to show that the 7kDa basic archaeal nucleoid protein Sso7d from Sulfolobus solfataricus (known to sharply bend DNA) likewise does not significantly condense DNA by itself. However, the resulting protein-DNA fibers are again highly susceptible to crowding-induced condensation. Clearly, if DNA-bending nucleoid proteins fail to condense DNA in dilute solution, this does not mean that they do not contribute to DNA condensation in the context of the crowded living cell. © 2007 World Scientific Publishing Company.