971 resultados para BATS-Counts
Resumo:
The emerging disease White-Nose Syndrome in hibernating bat populations across the United States has increased the need to understand the physiological benefits and consequences of hibernation and the effects on immunological responsiveness. Hibernation has been well-documented in many mammalian species, yet few studies have examined hibernation immunology in bats, particularly with respect to normal immunological patterns. In order to characterize the levels of circulating leukocytes and plasma immunoglobulins in euthermic and hibernating female big brown bats (Eptesicus fuscus), blood smear differential leukocyte counts and total immunoglobulin assays were performed for each group using blood samples from the active and hibernation seasons. Hibernation patterns – torpor and arousals from torpor – were determined by placing temperature-sensitive dataloggers on the backs of bats assigned to the hibernating group during the hibernation season. Data indicate that the ratio of circulating neutrophils to lymphocytes is lower in bats assigned to the euthermic group during the hibernation season than in bats assigned to the hibernation group during the hibernation period, but that relative immunoglobulin levels do not differ during the hibernation season, regardless of whether bats were active or hibernating. Neither bats assigned to the hibernation group nor bats assigned to the euthermic group demonstrate a significant change in the ratio of circulating neutrophils and lymphocytes between their active and hibernating seasons. Bats assigned to the hibernation group were also observed to arouse from torpor somewhat synchronously. These results suggest that innate and adaptive cell levels are maintained, at best, in hibernating bats that are not immunologically challenged and that bats that remain euthermic during the hibernation season are able to continually regulate their levels of neutrophils and lymphocytes and therefore their innate and adaptive immune system responses.
Resumo:
Editorial introduction to Vol. 34 of Review of Research in Education (American Educational Research Association/Sage).
Resumo:
The main objective of this PhD was to further develop Bayesian spatio-temporal models (specifically the Conditional Autoregressive (CAR) class of models), for the analysis of sparse disease outcomes such as birth defects. The motivation for the thesis arose from problems encountered when analyzing a large birth defect registry in New South Wales. The specific components and related research objectives of the thesis were developed from gaps in the literature on current formulations of the CAR model, and health service planning requirements. Data from a large probabilistically-linked database from 1990 to 2004, consisting of fields from two separate registries: the Birth Defect Registry (BDR) and Midwives Data Collection (MDC) were used in the analyses in this thesis. The main objective was split into smaller goals. The first goal was to determine how the specification of the neighbourhood weight matrix will affect the smoothing properties of the CAR model, and this is the focus of chapter 6. Secondly, I hoped to evaluate the usefulness of incorporating a zero-inflated Poisson (ZIP) component as well as a shared-component model in terms of modeling a sparse outcome, and this is carried out in chapter 7. The third goal was to identify optimal sampling and sample size schemes designed to select individual level data for a hybrid ecological spatial model, and this is done in chapter 8. Finally, I wanted to put together the earlier improvements to the CAR model, and along with demographic projections, provide forecasts for birth defects at the SLA level. Chapter 9 describes how this is done. For the first objective, I examined a series of neighbourhood weight matrices, and showed how smoothing the relative risk estimates according to similarity by an important covariate (i.e. maternal age) helped improve the model’s ability to recover the underlying risk, as compared to the traditional adjacency (specifically the Queen) method of applying weights. Next, to address the sparseness and excess zeros commonly encountered in the analysis of rare outcomes such as birth defects, I compared a few models, including an extension of the usual Poisson model to encompass excess zeros in the data. This was achieved via a mixture model, which also encompassed the shared component model to improve on the estimation of sparse counts through borrowing strength across a shared component (e.g. latent risk factor/s) with the referent outcome (caesarean section was used in this example). Using the Deviance Information Criteria (DIC), I showed how the proposed model performed better than the usual models, but only when both outcomes shared a strong spatial correlation. The next objective involved identifying the optimal sampling and sample size strategy for incorporating individual-level data with areal covariates in a hybrid study design. I performed extensive simulation studies, evaluating thirteen different sampling schemes along with variations in sample size. This was done in the context of an ecological regression model that incorporated spatial correlation in the outcomes, as well as accommodating both individual and areal measures of covariates. Using the Average Mean Squared Error (AMSE), I showed how a simple random sample of 20% of the SLAs, followed by selecting all cases in the SLAs chosen, along with an equal number of controls, provided the lowest AMSE. The final objective involved combining the improved spatio-temporal CAR model with population (i.e. women) forecasts, to provide 30-year annual estimates of birth defects at the Statistical Local Area (SLA) level in New South Wales, Australia. The projections were illustrated using sixteen different SLAs, representing the various areal measures of socio-economic status and remoteness. A sensitivity analysis of the assumptions used in the projection was also undertaken. By the end of the thesis, I will show how challenges in the spatial analysis of rare diseases such as birth defects can be addressed, by specifically formulating the neighbourhood weight matrix to smooth according to a key covariate (i.e. maternal age), incorporating a ZIP component to model excess zeros in outcomes and borrowing strength from a referent outcome (i.e. caesarean counts). An efficient strategy to sample individual-level data and sample size considerations for rare disease will also be presented. Finally, projections in birth defect categories at the SLA level will be made.
Resumo:
Large trucks are involved in a disproportionately small fraction of the total crashes but a disproportionately large fraction of fatal crashes. Large truck crashes often result in significant congestion due to their large physical dimensions and from difficulties in clearing crash scenes. Consequently, preventing large truck crashes is critical to improving highway safety and operations. This study identifies high risk sites (hot spots) for large truck crashes in Arizona and examines potential risk factors related to the design and operation of the high risk sites. High risk sites were identified using both state of the practice methods (accident reduction potential using negative binomial regression with long crash histories) and a newly proposed method using Property Damage Only Equivalents (PDOE). The hot spots identified via the count model generally exhibited low fatalities and major injuries but large minor injuries and PDOs, while the opposite trend was observed using the PDOE methodology. The hot spots based on the count model exhibited large AADTs, whereas those based on the PDOE showed relatively small AADTs but large fractions of trucks and high posted speed limits. Documented site investigations of hot spots revealed numerous potential risk factors, including weaving activities near freeway junctions and ramps, absence of acceleration lanes near on-ramps, small shoulders to accommodate large trucks, narrow lane widths, inadequate signage, and poor lighting conditions within a tunnel.
Resumo:
Aims. This article is a report of a study done to identify how renal nurses experience information about renal care and the information practices that they used to support everyday practice. Background. What counts as nursing knowledge remains a contested area in the discipline yet little research has been undertaken. Information practice encompasses a range of activities such as seeking, evaluation and sharing of information. The ability to make informed judgement is dependent on nurses being able to identify relevant sources of information that inform their practice and those sources of information may enable the identification of what knowledge is important to nursing practice. Method. The study was philosophically framed from a practice perspective and informed by Habermas and Schatzki; it employed qualitative research techniques. Using purposive sampling six registered nurses working in two regional renal units were interviewed during 2009 and data was thematically analysed. Findings. The information practices of renal nurses involved mapping an information landscape in which they drew on information obtained from epistemic, social and corporeal sources. They also used coupling, a process of drawing together information from a range of sources, to enable them to practice. Conclusion. Exploring how nurses engage with information, and the role the information plays in situating and enacting epistemic, social and corporeal knowledge into everyday nursing practice is instructive because it indicates that nurses must engage with all three modalities in order to perform effectively, efficiently and holistically in the context of patient care. © 2011 The Authors. Journal of Advanced Nursing © 2011 Blackwell Publishing Ltd.
Resumo:
Supporting students with Autism Spectrum Disorders (ASD) in inclusive settings presents both opportunities and significant challenges to school communities. This study, which explored the lived-experience of nine students with ASD in an inclusive high school in Australia, is based on the belief that by listening to the voices of students, school communities will be in a better position to collaboratively create supportive learning and social environments. The findings of this small-scale study deepen our knowledge from the student perspective of the inclusive educational practices that facilitate and constrain the learning and participation of students with ASD. The students’ perspectives were examined in relation to the characteristics of successful inclusive schools identified by Kluth. Implications for inclusive educational practice that meets the needs of students with ASD are presented.