46 resultados para BAGGING


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main objective of this project is to experimentally demonstrate geometrical nonlinear phenomena due to large displacements during resonant vibration of composite materials and to explain the problem associated with fatigue prediction at resonant conditions. Three different composite blades to be tested were designed and manufactured, being their difference in the composite layup (i.e. unidirectional, cross-ply, and angle-ply layups). Manual envelope bagging technique is explained as applied to the actual manufacturing of the components; problems encountered and their solutions are detailed. Forced response tests of the first flexural, first torsional, and second flexural modes were performed by means of a uniquely contactless excitation system which induced vibration by using a pulsed airflow. Vibration intensity was acquired by means of Polytec LDV system. The first flexural mode is found to be completely linear irrespective of the vibration amplitude. The first torsional mode exhibits a general nonlinear softening behaviour which is interestingly coupled with a hardening behaviour for the unidirectional layup. The second flexural mode has a hardening nonlinear behaviour for either the unidirectional and angle-ply blade, whereas it is slightly softening for the cross-ply layup. By using the same equipment as that used for forced response analyses, free decay tests were performed at different airflow intensities. Discrete Fourier Trasform over the entire decay and Sliding DFT were computed so as to visualise the presence of nonlinear superharmonics in the decay signal and when they were damped out from the vibration over the decay time. Linear modes exhibit an exponential decay, while nonlinearities are associated with a dry-friction damping phenomenon which tends to increase with increasing amplitude. Damping ratio is derived from logarithmic decrement for the exponential branch of the decay.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lo scopo di questo lavoro sperimentale ha riguardato l’ottimizzazione del processo di produzione di materiali compositi ecocompatibili per pannellature con proprietà termoisolanti e resistenza al fuoco, già oggetto di brevetto CNR. Questi compositi sono ottenuti miscelando fibre di lana di scarto in una matrice geopolimerica. Le fibre di lana, a base di cheratina, vengono parzialmente attaccate dalle soluzioni alcaline portando al rilascio di ammoniaca e a una degradazione del materiale. Questo fenomeno, che si verifica in modo non sistematico, è tanto più marcato quanto maggiori sono le dimensioni dei manufatti prodotti, in quanto aumenta il tempo in cui le fibre di lana rimangono nell’ambiente acquoso alcalino. Il fattore di scala risulta quindi essere determinante. È stata pertanto investigata la degradazione delle fibre di lana in ambiente acquoso alcalino necessario alla sintesi della matrice geopolimerica. Sono stati anche valutati diversi trattamenti volti a velocizzare l’essiccamento del composito e fermare contestualmente il rilascio di ammoniaca, quali: aumento dei tempi e delle temperature di postcura, vacuum bagging e liofilizzazione (freeze drying).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The early detection of subjects with probable Alzheimer's disease (AD) is crucial for effective appliance of treatment strategies. Here we explored the ability of a multitude of linear and non-linear classification algorithms to discriminate between the electroencephalograms (EEGs) of patients with varying degree of AD and their age-matched control subjects. Absolute and relative spectral power, distribution of spectral power, and measures of spatial synchronization were calculated from recordings of resting eyes-closed continuous EEGs of 45 healthy controls, 116 patients with mild AD and 81 patients with moderate AD, recruited in two different centers (Stockholm, New York). The applied classification algorithms were: principal component linear discriminant analysis (PC LDA), partial least squares LDA (PLS LDA), principal component logistic regression (PC LR), partial least squares logistic regression (PLS LR), bagging, random forest, support vector machines (SVM) and feed-forward neural network. Based on 10-fold cross-validation runs it could be demonstrated that even tough modern computer-intensive classification algorithms such as random forests, SVM and neural networks show a slight superiority, more classical classification algorithms performed nearly equally well. Using random forests classification a considerable sensitivity of up to 85% and a specificity of 78%, respectively for the test of even only mild AD patients has been reached, whereas for the comparison of moderate AD vs. controls, using SVM and neural networks, values of 89% and 88% for sensitivity and specificity were achieved. Such a remarkable performance proves the value of these classification algorithms for clinical diagnostics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Case-based reasoning (CBR) is a unique tool for the evaluation of possible failure of firms (EOPFOF) for its eases of interpretation and implementation. Ensemble computing, a variation of group decision in society, provides a potential means of improving predictive performance of CBR-based EOPFOF. This research aims to integrate bagging and proportion case-basing with CBR to generate a method of proportion bagging CBR for EOPFOF. Diverse multiple case bases are first produced by multiple case-basing, in which a volume parameter is introduced to control the size of each case base. Then, the classic case retrieval algorithm is implemented to generate diverse member CBR predictors. Majority voting, the most frequently used mechanism in ensemble computing, is finally used to aggregate outputs of member CBR predictors in order to produce final prediction of the CBR ensemble. In an empirical experiment, we statistically validated the results of the CBR ensemble from multiple case bases by comparing them with those of multivariate discriminant analysis, logistic regression, classic CBR, the best member CBR predictor and bagging CBR ensemble. The results from Chinese EOPFOF prior to 3 years indicate that the new CBR ensemble, which significantly improved CBRs predictive ability, outperformed all the comparative methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hoy en día, el refuerzo y reparación de estructuras de hormigón armado mediante el pegado de bandas de polímeros reforzados con fibras (FRP) se emplea cada vez con más frecuencia a causa de sus numerosas ventajas. Sin embargo, las vigas reforzadas con esta técnica pueden experimentar un modo de fallo frágil a causa del despegue repentino de la banda de FRP a partir de una fisura intermedia. A pesar de su importancia, el número de trabajos que abordan el estudio de este mecanismo de fallo y su monitorización es muy limitado. Por ello, el desarrollo de metodologías capaces de monitorizar a largo plazo la adherencia de este refuerzo a las estructuras de hormigón e identificar cuándo se inicia el despegue de la banda constituyen un importante desafío a abordar. El principal objetivo de esta tesis es la implementación de una metodología fiable y efectiva, capaz de detectar el despegue de una banda de FRP en una viga de hormigón armado a partir de una fisura intermedia. Para alcanzar este objetivo se ha implementado un procedimiento de calibración numérica a partir de ensayos experimentales. Para ello, en primer lugar, se ha desarrollado un modelo numérico unidimensional simple y no costoso representativo del comportamiento de este tipo vigas de hormigón reforzadas con FRP, basado en un modelo de fisura discreta para el hormigón y el método de elementos espectrales. La formación progresiva de fisuras a flexion y el consiguiente despegue en la interface entre el hormigón y el FRP se formulan mediante la introducción de un nuevo elemento capaz de representar ambos fenómenos simultáneamente sin afectar al procedimiento numérico. Además, con el modelo propuesto, se puede obtener de una forma sencilla la respuesta dinámica en altas frecuencias de este tipo de estructuras, lo cual puede hacer muy útil su uso como herramienta de diagnosis y detección del despegue en su fase inicial mediante una monitorización de la variación de las características dinámicas locales de la estructura. Un método de evaluación no destructivo muy prometedor para la monitorización local de las estructuras es el método de la impedancia usando sensores-actuadores piezoeléctricos (PZT). La impedancia eléctrica de los sensores PZT se puede relacionar con la impedancia mecánica de las estructuras donde se encuentran adheridos Ya que la impedancia mecánica de una estructura se verá afectada por su deterioro, se pueden implementar indicadores de daño mediante una comparación del espectro de admitancia (inversa de la impedancia) a lo largo de distintas etapas durante el periodo de servicio de una estructura. Cualquier cambio en el espectro se podría interpretar como una variación en la integridad de la estructura. La impedancia eléctrica se mide a altas frecuencias con lo cual esta metodología debería ser muy sensible a la detección de estados de daño incipiente local, tal como se desea en la aplicación de este trabajo. Se ha implementado un elemento espectral PZT-FRP como extensión del modelo previamente desarrollado, con el objetivo de poder calcular numéricamente la impedancia eléctrica de sensores PZT adheridos a bandas de FRP sobre una viga de hormigón armado. El modelo, combinado con medidas experimentales captadas mediante sensores PZT, se implementa en el marco de una metodología de calibración de modelos para detectar cuantitativamente el despegue en la interfase entre una banda de FRP y una viga de hormigón. El procedimiento de optimización se resuelve empleando el método del enjambre cooperativo con un algoritmo bagging. Los resultados muestran una gran aproximación en la estimación del daño para el problema propuesto. Adicionalmente, se ha desarrollado también un método adaptativo para el mallado de elementos espectrales con el objetivo de localizar las zonas dañadas a partir de los resultados experimentales, el cual contribuye a aumentar la robustez y efectividad del método propuesto a la hora de identificar daños incipientes en su aparición inicial. Finalmente, se ha llevado a cabo un procedimiento de optimización multi-objetivo para detectar el despegue inicial en una viga de hormigón a escala real reforzada con FRP a partir de las impedancias captadas con una red de sensores PZT instrumentada a lo largo de la longitud de la viga. Cada sensor aporta los datos para definir cada una de las funciones objetivo que definen el procedimiento. Combinando el modelo previo de elementos espectrales con un algoritmo PSO multi-objetivo el procedimiento de detección de daño resultante proporciona resultados satisfactorios considerando la escala de la estructura y todas las incertidumbres características ligadas a este proceso. Los resultados obtenidos prueban la viabilidad y capacidad de los métodos antes mencionados y también su potencial en aplicaciones reales. Abstract Nowadays, the external bonding of fibre reinforced polymer (FRP) plates or sheets is increasingly used for the strengthening and retrofitting of reinforced concrete (RC) structures due to its numerous advantages. However, this kind of strengthening often leads to brittle failure modes being the most dominant failure mode the debonding induced by an intermediate crack (IC). In spite of its importance, the number of studies regarding the IC debonding mechanism and bond health monitoring is very limited. Methodologies able to monitor the long-term efficiency of bonding and successfully identify the initiation of FRP debonding constitute a challenge to be met. The main purpose of this thesisis the implementation of a reliable and effective methodology of damage identification able to detect intermediate crack debonding in FRP-strengthened RC beams. To achieve this goal, a model updating procedure based on numerical simulations and experimental tests has been implemented. For it, firstly, a simple and non-expensive one-dimensional model based on the discrete crack approach for concrete and the spectral element method has been developed. The progressive formation of flexural cracks and subsequent concrete-FRP interfacial debonding is formulated by the introduction of a new element able to represent both phenomena simultaneously without perturbing the numerical procedure. Furthermore, with the proposed model, high frequency dynamic response for these kinds of structures can also be obtained in a very simple and non-expensive way, which makes this procedure very useful as a tool for diagnoses and detection of debonding in its initial stage by monitoring the change in local dynamic characteristics. One very promising active non-destructive evaluation method for local monitoring is impedance-based structural health monitoring(SHM)using piezoelectric ceramic (PZT) sensor-actuators. The electrical impedance of the PZT can be directly related to the mechanical impedance of the host structural component where the PZT transducers are attached. Since the structural mechanical impedance will be affected by the presence of structural damage, comparisons of admittance (inverse of impedance) spectra at various times during the service period of the structure can be used as damage indicator. Any change in the spectra might be an indication of a change in the structural integrity. The electrical impedance is measured at high frequencies with which this methodology appears to be very sensitive to incipient damage in structural systems as desired for our application. Abonded-PZT-FRP spectral beam element approach based on an extension of the previous discrete crack approach is implemented in the calculation of the electrical impedance of the PZT transducer bonded to the FRP plates of a RC beam. This approach in conjunction with the experimental measurements of PZT actuator-sensors mounted on the structure is used to present an updating methodology to quantitatively detect interfacial debonding between a FRP strip and the host RC structure. The updating procedure is solved by using an ensemble particle swarm optimization approach with abagging algorithm, and the results demonstrate a big improvement for the performance and accuracy of the damage detection in the proposed problem. Additionally, an adaptive strategy of spectral element mesh has been also developed to detect damage location with experimental results, which shows the robustness and effectiveness of the proposed method to identify initial and incipient damages at its early stage. Lastly, multi-objective optimization has been carried out to detect debonding damage in a real scale FRP-strengthened RC beam by using impedance signatures. A net of PZT sensors is distributed along the beam to construct impedance-based multiple objectives under gradually induced damage scenario. By combining the spectral element model presented previously and an ensemble multi-objective PSO algorithm, the implemented damage detection process yields satisfactory predictions considering the scale and uncertainties of the structure. The obtained results prove the feasibility and capability of the aforementioned methods and also their potentials in real engineering applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: Considering the UK's limited capacity for waste disposal (particularly for hazardous/radiological waste) there is growing focus on waste avoidance and minimisation to lower the volumes of waste being sent to disposal. The hazardous nature of some waste can complicate its management and reduction. To address this problem there was a need for a decision making methodology to support managers in the nuclear industry as they identify ways to reduce the production of avoidable hazardous waste. The methodology we developed is called Waste And Sourcematter Analysis (WASAN). A methodology that begins the thought process at the pre-waste creation stage (i.e. Avoid). Design/methodology/ approach: The methodology analyses the source of waste, the production of waste inside the facility, the knock on effects from up/downstream facilities on waste production, and the down-selection of waste minimisation actions/options. WASAN has been applied to case studies with licencees and this paper reports on one such case study - the management of plastic bags in Enriched Uranium Residues Recovery Plant (EURRP) at Springfields (UK) where it was used to analyse the generation of radioactive plastic bag waste. Findings: Plastic bags are used in EURRP as a strategy to contain hazard. Double bagging of materials led to the proliferation of these bags as a waste. The paper reports on the philosophy behind WASAN, the application of the methodology to this problem, the results, and views from managers in EURRP. Originality/value: This paper presents WASAN as a novel methodology for analyzing the minimization of avoidable hazardous waste. This addresses an issue that is important to many industries e.g. where legislation enforces waste minimization, where waste disposal costs encourage waste avoidance, or where plant design can reduce waste. The paper forms part of the HSE Nuclear Installations Inspectorate's desire to work towards greater openness and transparency in its work and the development in its thinking.© Crown Copyright 2011.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Significant advances have emerged in research related to the topic of Classifier Committees. The models that receive the most attention in the literature are those of the static nature, also known as ensembles. The algorithms that are part of this class, we highlight the methods that using techniques of resampling of the training data: Bagging, Boosting and Multiboosting. The choice of the architecture and base components to be recruited is not a trivial task and has motivated new proposals in an attempt to build such models automatically, and many of them are based on optimization methods. Many of these contributions have not shown satisfactory results when applied to more complex problems with different nature. In contrast, the thesis presented here, proposes three new hybrid approaches for automatic construction for ensembles: Increment of Diversity, Adaptive-fitness Function and Meta-learning for the development of systems for automatic configuration of parameters for models of ensemble. In the first one approach, we propose a solution that combines different diversity techniques in a single conceptual framework, in attempt to achieve higher levels of diversity in ensembles, and with it, the better the performance of such systems. In the second one approach, using a genetic algorithm for automatic design of ensembles. The contribution is to combine the techniques of filter and wrapper adaptively to evolve a better distribution of the feature space to be presented for the components of ensemble. Finally, the last one approach, which proposes new techniques for recommendation of architecture and based components on ensemble, by techniques of traditional meta-learning and multi-label meta-learning. In general, the results are encouraging and corroborate with the thesis that hybrid tools are a powerful solution in building effective ensembles for pattern classification problems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

He was obtained and studied the feasibility of using TPA (Tissue Cotton Plan) screen type, for bagging, with a weight of 207.9 g / m2 in a composite of orthophthalic crystal polyester resin matrix. The process for obtaining the composite was tested against the maximum number of layers that could be used without compromising the processability and manufacturing of CPs in compression mold. Five configurations / formulations were selected and tested at 1, 4, 8, 10 and 12 layers of cotton tissue - TPA. TPA was not subjected to chemical treatment, only by passing a mechanical washing process. The composite in its various configurations / formulations was characterized to determine its physical properties. The properties of the composite were higher viability resistance to bending, approaching the matrix and impact resistance, superiority in relation to the polyester resin. Another property that has shown good result compared to other composite has water absorption. Analyzing all the properties set the settings / formulations with higher viability were TA8 and TA10, by combining good processability and higher mechanical strength, with lower loss compared to polyester resin matrix. The composite showed lower mechanical behavior of the resin matrix for all the formulations studied except the impact resistance. The SEM showed a good adhesion between the layers of TPA and polyester resin matrix, without the presence of micro voids in the matrix confirming the efficient manufacturing process of the samples for characterization. The composite proposed proved to be viable for the fabrication of structures with low requests from mechanical stresses, and as demonstrated for the manufacture of solar and wind prototypes, and packaging, shelving, decorative items, crafts and shelves, with good visual appearance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

He was obtained and studied the feasibility of using TPA (Tissue Cotton Plan) screen type, for bagging, with a weight of 207.9 g / m2 in a composite of orthophthalic crystal polyester resin matrix. The process for obtaining the composite was tested against the maximum number of layers that could be used without compromising the processability and manufacturing of CPs in compression mold. Five configurations / formulations were selected and tested at 1, 4, 8, 10 and 12 layers of cotton tissue - TPA. TPA was not subjected to chemical treatment, only by passing a mechanical washing process. The composite in its various configurations / formulations was characterized to determine its physical properties. The properties of the composite were higher viability resistance to bending, approaching the matrix and impact resistance, superiority in relation to the polyester resin. Another property that has shown good result compared to other composite has water absorption. Analyzing all the properties set the settings / formulations with higher viability were TA8 and TA10, by combining good processability and higher mechanical strength, with lower loss compared to polyester resin matrix. The composite showed lower mechanical behavior of the resin matrix for all the formulations studied except the impact resistance. The SEM showed a good adhesion between the layers of TPA and polyester resin matrix, without the presence of micro voids in the matrix confirming the efficient manufacturing process of the samples for characterization. The composite proposed proved to be viable for the fabrication of structures with low requests from mechanical stresses, and as demonstrated for the manufacture of solar and wind prototypes, and packaging, shelving, decorative items, crafts and shelves, with good visual appearance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Empirical studies of education programs and systems, by nature, rely upon use of student outcomes that are measurable. Often, these come in the form of test scores. However, in light of growing evidence about the long-run importance of other student skills and behaviors, the time has come for a broader approach to evaluating education. This dissertation undertakes experimental, quasi-experimental, and descriptive analyses to examine social, behavioral, and health-related mechanisms of the educational process. My overarching research question is simply, which inside- and outside-the-classroom features of schools and educational interventions are most beneficial to students in the long term? Furthermore, how can we apply this evidence toward informing policy that could effectively reduce stark social, educational, and economic inequalities?

The first study of three assesses mechanisms by which the Fast Track project, a randomized intervention in the early 1990s for high-risk children in four communities (Durham, NC; Nashville, TN; rural PA; and Seattle, WA), reduced delinquency, arrests, and health and mental health service utilization in adolescence through young adulthood (ages 12-20). A decomposition of treatment effects indicates that about a third of Fast Track’s impact on later crime outcomes can be accounted for by improvements in social and self-regulation skills during childhood (ages 6-11), such as prosocial behavior, emotion regulation and problem solving. These skills proved less valuable for the prevention of mental and physical health problems.

The second study contributes new evidence on how non-instructional investments – such as increased spending on school social workers, guidance counselors, and health services – affect multiple aspects of student performance and well-being. Merging several administrative data sources spanning the 1996-2013 school years in North Carolina, I use an instrumental variables approach to estimate the extent to which local expenditure shifts affect students’ academic and behavioral outcomes. My findings indicate that exogenous increases in spending on non-instructional services not only reduce student absenteeism and disciplinary problems (important predictors of long-term outcomes) but also significantly raise student achievement, in similar magnitude to corresponding increases in instructional spending. Furthermore, subgroup analyses suggest that investments in student support personnel such as social workers, health services, and guidance counselors, in schools with concentrated low-income student populations could go a long way toward closing socioeconomic achievement gaps.

The third study examines individual pathways that lead to high school graduation or dropout. It employs a variety of machine learning techniques, including decision trees, random forests with bagging and boosting, and support vector machines, to predict student dropout using longitudinal administrative data from North Carolina. I consider a large set of predictor measures from grades three through eight including academic achievement, behavioral indicators, and background characteristics. My findings indicate that the most important predictors include eighth grade absences, math scores, and age-for-grade as well as early reading scores. Support vector classification (with a high cost parameter and low gamma parameter) predicts high school dropout with the highest overall validity in the testing dataset at 90.1 percent followed by decision trees with boosting and interaction terms at 89.5 percent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many exchange rate papers articulate the view that instabilities constitute a major impediment to exchange rate predictability. In this thesis we implement Bayesian and other techniques to account for such instabilities, and examine some of the main obstacles to exchange rate models' predictive ability. We first consider in Chapter 2 a time-varying parameter model in which fluctuations in exchange rates are related to short-term nominal interest rates ensuing from monetary policy rules, such as Taylor rules. Unlike the existing exchange rate studies, the parameters of our Taylor rules are allowed to change over time, in light of the widespread evidence of shifts in fundamentals - for example in the aftermath of the Global Financial Crisis. Focusing on quarterly data frequency from the crisis, we detect forecast improvements upon a random walk (RW) benchmark for at least half, and for as many as seven out of 10, of the currencies considered. Results are stronger when we allow the time-varying parameters of the Taylor rules to differ between countries. In Chapter 3 we look closely at the role of time-variation in parameters and other sources of uncertainty in hindering exchange rate models' predictive power. We apply a Bayesian setup that incorporates the notion that the relevant set of exchange rate determinants and their corresponding coefficients, change over time. Using statistical and economic measures of performance, we first find that predictive models which allow for sudden, rather than smooth, changes in the coefficients yield significant forecast improvements and economic gains at horizons beyond 1-month. At shorter horizons, however, our methods fail to forecast better than the RW. And we identify uncertainty in coefficients' estimation and uncertainty about the precise degree of coefficients variability to incorporate in the models, as the main factors obstructing predictive ability. Chapter 4 focus on the problem of the time-varying predictive ability of economic fundamentals for exchange rates. It uses bootstrap-based methods to uncover the time-specific conditioning information for predicting fluctuations in exchange rates. Employing several metrics for statistical and economic evaluation of forecasting performance, we find that our approach based on pre-selecting and validating fundamentals across bootstrap replications generates more accurate forecasts than the RW. The approach, known as bumping, robustly reveals parsimonious models with out-of-sample predictive power at 1-month horizon; and outperforms alternative methods, including Bayesian, bagging, and standard forecast combinations. Chapter 5 exploits the predictive content of daily commodity prices for monthly commodity-currency exchange rates. It builds on the idea that the effect of daily commodity price fluctuations on commodity currencies is short-lived, and therefore harder to pin down at low frequencies. Using MIxed DAta Sampling (MIDAS) models, and Bayesian estimation methods to account for time-variation in predictive ability, the chapter demonstrates the usefulness of suitably exploiting such short-lived effects in improving exchange rate forecasts. It further shows that the usual low-frequency predictors, such as money supplies and interest rates differentials, typically receive little support from the data at monthly frequency, whereas MIDAS models featuring daily commodity prices are highly likely. The chapter also introduces the random walk Metropolis-Hastings technique as a new tool to estimate MIDAS regressions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Faculdade de Economia, Administração e Contabilidade, Programa de Pós-Graduação em Administração, 2016.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En la actualidad, existen un gran número de investigaciones que usan técnicas de aprendizaje automático basadas en árboles de decisión. Como evolución de dichos trabajos, se han desarrollado métodos que usan Multiclasificadores (Random forest, Boosting, Bagging) que resuelven los mismos problemas abordados con árboles de decisión simples, aumentando el porcentaje de acierto. El ámbito de los problemas resueltos tradicionalmente por dichas técnicas es muy variado aunque destaca la bio-informática. En cualquier caso, la clasificación siempre puede ser consultada a un experto considerándose su respuesta como correcta. Existen problemas donde un experto en la materia no siempre acierta. Un ejemplo, pueden ser las quinielas (1X2). Donde podemos observar que un conocimiento del dominio del problema aumenta el porcentaje de aciertos, sin embargo, predecir un resultado erróneo es muy posible. El motivo es que el número de factores que influyen en un resultado es tan grande que, en muchas ocasiones, convierten la predicción en un acto de azar. En este trabajo pretendemos encontrar un multiclasificador basado en los clasificadores simples más estudiados como pueden ser el Perceptrón Multicapa o Árboles de Decisión con el porcentaje de aciertos más alto posible. Con tal fin, se van a estudiar e implementar una serie de configuraciones de clasificadores propios junto a multiclasificadores desarrollados por terceros. Otra línea de estudio son los propios datos, es decir, el conjunto de entrenamiento. Mediante un estudio del dominio del problema añadiremos nuevos atributos que enriquecen la información que disponemos de cada resultado intentando imitar el conocimiento en el que se basa un experto. Los desarrollos descritos se han realizado en R. Además, se ha realizado una aplicación que permite entrenar un multiclasificador (bien de los propios o bien de los desarrollados por terceros) y como resultado obtenemos la matriz de confusión junto al porcentaje de aciertos. En cuanto a resultados, obtenemos porcentajes de aciertos entre el 50% y el 55%. Por encima del azar y próximos a los resultados de los expertos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese (doutorado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Florestal, Programa de Pós-Graduação em Ciências Florestais, 2015.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ensemble Stream Modeling and Data-cleaning are sensor information processing systems have different training and testing methods by which their goals are cross-validated. This research examines a mechanism, which seeks to extract novel patterns by generating ensembles from data. The main goal of label-less stream processing is to process the sensed events to eliminate the noises that are uncorrelated, and choose the most likely model without over fitting thus obtaining higher model confidence. Higher quality streams can be realized by combining many short streams into an ensemble which has the desired quality. The framework for the investigation is an existing data mining tool. First, to accommodate feature extraction such as a bush or natural forest-fire event we make an assumption of the burnt area (BA*), sensed ground truth as our target variable obtained from logs. Even though this is an obvious model choice the results are disappointing. The reasons for this are two: One, the histogram of fire activity is highly skewed. Two, the measured sensor parameters are highly correlated. Since using non descriptive features does not yield good results, we resort to temporal features. By doing so we carefully eliminate the averaging effects; the resulting histogram is more satisfactory and conceptual knowledge is learned from sensor streams. Second is the process of feature induction by cross-validating attributes with single or multi-target variables to minimize training error. We use F-measure score, which combines precision and accuracy to determine the false alarm rate of fire events. The multi-target data-cleaning trees use information purity of the target leaf-nodes to learn higher order features. A sensitive variance measure such as f-test is performed during each node’s split to select the best attribute. Ensemble stream model approach proved to improve when using complicated features with a simpler tree classifier. The ensemble framework for data-cleaning and the enhancements to quantify quality of fitness (30% spatial, 10% temporal, and 90% mobility reduction) of sensor led to the formation of streams for sensor-enabled applications. Which further motivates the novelty of stream quality labeling and its importance in solving vast amounts of real-time mobile streams generated today.