998 resultados para Axonal Transport


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microfluidic devices have been developed for imaging behavior and various cellular processes in Caenorhabditis elegans, but not subcellular processes requiring high spatial resolution. In neurons, essential processes such as axonal, dendritic, intraflagellar and other long-distance transport can be studied by acquiring fast time-lapse images of green fluorescent protein (GFP)-tagged moving cargo. We have achieved two important goals in such in vivo studies namely, imaging several transport processes in unanesthetized intact animals and imaging very early developmental stages. We describe a microfluidic device for immobilizing C. elegans and Drosophila larvae that allows imaging without anesthetics or dissection. We observed that for certain neuronal cargoes in C. elegans, anesthetics have significant and sometimes unexpected effects on the flux. Further, imaging the transport of certain cargo in early developmental stages was possible only in the microfluidic device. Using our device we observed an increase in anterograde synaptic vesicle transport during development corresponding with synaptic growth. We also imaged Q neuroblast divisions and mitochondrial transport during early developmental stages of C. elegans and Drosophila, respectively. Our simple microfluidic device offers a useful means to image high-resolution subcellular processes in C. elegans and Drosophila and can be readily adapted to other transparent or translucent organisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous studies that have used retrograde axonal tracers (horseradish peroxidase alone or conjugated with wheat germ agglutinin) have shown that the temporomandibular joint (TMJ) is supplied with nerve fibers originating mainly from the trigeminal ganglion, in addition to other sensory and sympathetic ganglia. The existence of nerve fibers in the TMJ originating from the trigeminal mesencephalic nucleus is unclear, and the possible innervation by parasympathetic nerve fibers has not been determined. In the present work, the retrograde axonal tracer, fast blue, was used to elucidate these questions and re-evaluated the literature data. The tracer was deposited in the supradiscal articular space of the rat TMJ, and an extensive morphometric analysis was performed of the labeled perikaryal profiles located in sensory and autonomic ganglia. This methodology permitted us to observe labeled small perikaryal profiles in the trigeminal ganglion, clustered mainly in the posterior-lateral region of the dorsal, medial and ventral thirds of horizontal sections, with some located in the anterior-lateral region of the ventral third. Sensory perikarya were also labeled in the dorsal root ganglia from C2 to C5. No labeled perikaryal profiles were found in the trigeminal mesencephalic nucleus. on the other hand, autonomic labeled perikaryal profiles were distributed in the sympathetic superior cervical and stellate ganglia, and parasympathetic otic ganglion. Our results confirmed those of previous studies and also demonstrated that: (i) there is a distribution pattern of labeled perikaryal profiles in the trigeminal ganglion; (ii) some perikaryal profiles located in the otic ganglion were labeled; and (iii) the trigeminal mesencephalic nucleus did not show any retrogradely labeled perikaryal profiles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Kinesin molecular motor proteins are responsible for many of the major microtubule-dependent transport pathways in neuronal and non-neuronal cells. Elucidating the transport pathways mediated by kinesins, the identity of the cargoes moved, and the nature of the proteins that link kinesin motors to cargoes are areas of intense investigation. Kinesin-II recently was found to be required for transport in motile and nonmotile cilia and flagella where it is essential for proper left-right determination in mammalian development, sensory function in ciliated neurons, and opsin transport and viability in photoreceptors. Thus, these pathways and proteins may be prominent contributors to several human diseases including ciliary dyskinesias, situs inversus, and retinitis pigmentosa. Kinesin-I is needed to move many different types of cargoes in neuronal axons. Two candidates for receptor proteins that attach kinesin-I to vesicular cargoes were recently found. One candidate, sunday driver, is proposed to both link kinesin-I to an unknown vesicular cargo and to bind and organize the mitogen-activated protein kinase components of a c-Jun N-terminal kinase signaling module. A second candidate, amyloid precursor protein, is proposed to link kinesin-I to a different, also unknown, class of axonal vesicles. The finding of a possible functional interaction between kinesin-I and amyloid precursor protein may implicate kinesin-I based transport in the development of Alzheimer's disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hippocampal neurons in culture develop morphological polarity in a sequential pattern; axons form before dendrites. Molecular differences, particularly those of membrane proteins, underlie the functional polarity of these domains, yet little is known about the temporal relationship between membrane protein polarization and morphological polarization. We took advantage of viral expression systems to determine when during development the polarization of membrane proteins arises. All markers were unpolarized in neurons before axonogenesis. In neurons with a morphologically distinguishable axon, even on the first day in culture, both axonal and dendritic proteins were polarized. The degree of polarization at these early stages was somewhat less than in mature cells and varied from cell to cell. The cellular mechanism responsible for the polarization of the dendritic marker protein transferrin receptor (TfR) in mature cells centers on directed transport to the dendritic domain. To examine the relationship between cell surface polarization and transport, we assessed the selectivity of transport by live cell imaging. TfR-green fluorescent protein-containing vesicles were already preferentially transported into dendrites at 2 days, the earliest time point we could measure. The selectivity of transport also varied somewhat among cells, and the amount of TfR-green fluorescent protein fluorescence on intracellular structures within the axon correlated with the amount of cell surface expression. This observation implies that selective microtubule-based transport is the primary mechanism that underlies the polarization of TfR on the cell surface. By 5 days in culture, the extent of polarization on the cell surface and the selectivity of transport reached mature levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has previously been shown that mRNA encoding the arginine vasopressin (AVP) precursor is targeted to axons of rat magnocellular neurons of the hypothalamo-neurohypophyseal tract. In the homozygous Brattle-boro rat, which has a G nucleotide deletion in the coding region of the AVP gene, no such targeting is observed although the gene is transcribed. RNase protection and heteroduplex analyses demonstrate that, in heterozygous animals, which express both alleles of the AVP gene, the wild-type but not the mutant transcript is subject to axonal compartmentation. In contrast, wild-type and mutant AVP mRNAs are present in dendrites. These data suggest the existence of different mechanisms for mRNA targeting to the two subcellular compartments. Axonal mRNA localization appears to take place after protein synthesis; the mutant transcript is not available for axonal targeting because it lacks a stop codon preventing its release from ribosomes. Dendritic compartmentation, on the other hand, is likely to precede translation and, thus, would be unable to discriminate between the two mRNAs.