965 resultados para Axon guidance
Resumo:
Primary olfactory neurons that express the same odorant receptor are distributed mosaically throughout the olfactory neuroepithelium lining the nasal cavity, yet their axons converge and form discrete glomeruli in the olfactory bulb. We previously proposed that cell surface carbohydrates mediate the sorting out and selective fasciculation of primary olfactory axons en route to glomeruli. If this were the case, then axons that terminate in the same glomerulus would express the same complement of cell surface carbohydrates. In this study, we examined the expression of a novel carbohydrate (NOC-3) on neural cell adhesion molecule in the adult rat olfactory system. NOC-3 was expressed by a subset of neurons distributed throughout the olfactory neuroepithelium. The axons of these neurons entered the nerve fiber layer and terminated in a subset of glomeruli. It is interesting to note that we identified three unusually large glomeruli in the lateral, ventrolateral, and ventromedial olfactory bulb that were innervated by axons expressing NOC-3. NOC-3-expressing axons sorted out and fasciculated into discrete fascicles prior to entering these glomeruli. Each of these glomeruli was in a topographically fixed position in the olfactory bulbs of the same animal as well as in different animals, and their lengths were approximately 10% of the total length of the bulb. They could be identified reliably by both their topographical position and their unique morphology. These results reveal that axons expressing the same cell surface carbohydrates consistently target the same topographically fixed glomeruli, which supports a role for these molecules in axon navigation in the primary olfactory nerve pathway. J. Comp. Neurol. 436: 497-507, 2001. (C) 2001 Wiley-Liss, Inc.
Resumo:
DCC (deleted in colon cancer), Neogenin and UNC-5 are all members of the immunoglobulin superfamily of transmembrane receptors which are believed to play a role in axon guidance by binding to their ligands, the Netrin/UNC-40 family of secreted molecules (Cell. Mol. Life Sci. 56 (1999) 62; Curr. Opin. Genet. Dev. 7 (1997) 87). Although zebrafish homologues of the Netrin family of secreted molecules have been reported, to date there has been no published description of zebrafish DCC homologues (Mol. Cell. Neurosci. 9 (1997) 293., Mol. Cell. Neurosci. I I ( 1998) 194; Mech. Dev. 62 (1997) 147). We report here the expression pattern of a zebrafish dcc (zdcc) homologue during the initial period of neurogenesis and axon tract formation within the developing central nervous system. Between 12 and 33 h post-fertilisation zdcc is expressed in a dynamic spatiotemporal pattern in all major subdivisions of the central nervous system. Double-labelling for zdcc and the post-mitotic neuronal marker HNK-1 revealed that subpopulations of neurons within the first nuclei of the zebrafish brain express zdcc. These results support our previous observation that patterning of neuronal clusters in the zebrafish brain occurs early in development (Dev. Bioi, 229 (2001) 271). (C) 2001 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
The Eph family of receptor tyrosine kinases and their ligands, the ephrins, are important regulators of axon guidance and cell migration in the developing nervous system. Inactivation of the EphA4 gene results in axon guidance defects of the corticospinal tract, a major descending motor pathway that originates in the cortex and terminates at all levels of the spinal cord. In this investigation, we report that although the initial development of the corticospinal projection is normal through the cortex, internal capsule, cerebral peduncle, and medulla in the brain of EphA4 deficient animals, corticospinal axons exhibit gross abnormalities when they enter the gray matter of the spinal cord. Notably, many corticospinal axons fail to remain confined to one side of the spinal cord during development and instead, aberrantly project across the midline, terminating ipsilateral to their cells of origin. Given the possible repulsive interactions between EphA4 and one of its ligands, ephrinB3, this defect could be consistent with a loss of responsiveness by corticospinal axons to ephrinB3 that is expressed at the spinal cord midline. Furthermore, we show that EphA4 deficient animals exhibit ventral displacement of the mature corticospinal termination pattern, suggesting that developing corticospinal axons, which may also express ephrinB3, fail to be repelled from areas of high EphA4 expression in the intermediate zone of the normal spinal cord. Taken together, these results suggest that the dual expression of EphA4 on corticospinal axons and also within the surrounding gray matter is very important for the correct development and termination of the corticospinal projection within the spinal cord. J. Comp. Neurol. 436: 248-262, 2001. (C) 2001 Wiley-Liss, Inc.
Resumo:
The neurexins are a large family of neuronal cell-surface proteins believed to be involved in intercellular signalling and the formation of intercellular junctions. To begin to assess the role of these proteins in the olfactory bulb, we describe here the expression patterns of their transmembrane and secreted ligands, the neuroligins and neurexophilins, during both embryonic and postnatal development. In situ hybridisation showed that neuroligin 1 and 2 were expressed by second order mitral cells during early postnatal development but not in adults. The secreted ligand for a-neurexin, neurexophilin 1, was also expressed in the postnatal olfactory bulb. Neurexophilin 1 was detected in only periglomerular cells during the early postnatal period of glomerular formation but later was also expressed in mitral cells. These results suggest that neurexin-ligand interactions may be important for development and/or maturation of synaptic connections in the primary olfactory pathway.
Resumo:
The receptor Roundabout-1 (Robo1) and its ligand Slit are known to influence axon guidance and central nervous system (CNS) patterning in both vertebrate and nonvertebrate systems. Although Robo-Slit interactions mediate axon guidance in the Drosophila CNS, their role in establishing the early axon scaffold in the embryonic vertebrate brain remains unclear. We report here the identification and expression of a Xenopus Robo1 orthologue that is highly homologous to mammalian Robo1. By using overexpression studies and immunohistochemical and in situ hybridization techniques, we have investigated the role of Robo1 in the development of a subset of neurons and axon tracts in the Xenopus forebrain. Robo1 is expressed in forebrain nuclei and in neuroepithelial cells underlying the main axon tracts. Misexpression of Robo1 led to aberrant development of axon tracts as well as the ectopic differentiation of forebrain neurons. These results implicate Robo1 in both neuronal differentiation and axon guidance in embryonic vertebrate forebrain. (C) 2002 Wiley-Liss, Inc.
Resumo:
The spatiotemporal expression patterns of the chemorepulsive EphA receptors, EphA4 and EphA7, and three ephrins-A2, A4 and A5, were examined in the developing rat primary olfactory system. Unlike the visual system that has simple and stable gradients of Ephs and ephrins, the olfactory system demonstrates complex spatiotemporal expression patterns of these molecules. Using immunohistochemistry, we demonstrate that expression of these molecules is dynamic and tightly regulated both within and between different cell types. We reveal restricted targeting of these proteins within subcellular compartments of some neurons. EphA4, ephrin-A2 and ephrin-A5 were expressed by primary olfactory axons during the embryonic formation of the olfactory nerve. There were no gradients in expression along the rostrocaudal or ventrodorsal axes in the nasal cavity and olfactory bulb. However, during the early neonatal period, axons expressing different levels of ephrin-A5 sorted out and terminated in a subpopulation of glomeruli that were mosaically dispersed throughout the bulb. The expression of EphA4 and ephrin-A2 was dramatically down-regulated on all axons during the early neonatal period of glomerular formation. The uniform co-expression of receptors and ligands before glomerular formation suggests they play a generic role in axon-axon interactions in the olfactory nerve and nerve fibre layer. In contrast, loss of EphA4 from axons during glomerular formation may facilitate the interaction of ephrin-A5 with Eph receptors on target cells in the bulb. While EphA4, EphA5 and EphA7 are not mosaically expressed by bulbar neurons, other Eph receptors may have expression patterns complementary to the ephrin-A5-positive subpopulation of glomeruli. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
To investigate the effect of the N-terminal Slit2 protein on neuronal survival and development, recombinant human N-terminal Slit2 (N-Slit2) was assayed against isolated embryonic chick dorsal root ganglion sensory, ciliary ganglion and paravertebral sympathetic neurons. N-Slit2 promoted significant levels of neuronal survival and neurite extension in all of these populations. The protein was also assayed against postnatal mouse dorsal root ganglion neurons and found to promote neuronal survival in a similar manner. These findings suggest the Slit proteins may play an important role during development of the nervous system, mediating cellular survival in addition to the well documented role these proteins play in axonal and neuronal chemorepulsion.
Resumo:
In an attempt to elucidate the role of Slit2 invertebrate kidney development, the effect of adding exogenous human Slit2 protein (hSlit2) to developing murine metanephric kidney explants was examined. To confirm the activity of the recombinant Slit2 protein, neurons from 8 day old chick sympathetic nerve chain dorsal root ganglia were cultured with hSlit2 protein, which induced significant neurite branching and outgrowth. Using kidney explants as a model system, metanephric development in the presence of hSlit2 protein was examined. Addition of hSlit2 up to a final concentration of 1 mug/ml had no detectable effect on the formation of nephrons or on branching morphogenesis of the ureteric tree after 2 or 4 days in culture, as assessed via immunofluorescence for the markers WT1 and calbindin 28K respectively. Similarly, maturation of the nephrogenic mesenchyme occurred in a phenotypically normal fashion. In situ analysis of the Slit receptors, Robot and Robot, the vasculogenic markers VEGFA and Flk-1, and the stromal cell marker BF2 displayed no difference in comparison to controls.
Resumo:
First isolated in the fly and now characterised in vertebrates, the Slit proteins have emerged as pivotal components controlling the guidance of axonal growth cones and the directional migration of neuronal precursors. As well as extensive expression during development of the central nervous system (CNS), the Slit proteins exhibit a striking array of expression sites in non-neuronal tissues, including the urogenital system, limb primordia and developing eye. Zebrafish Slit has been shown to mediate mesodermal migration during gastrulation, while Drosophila slit guides the migration of mesodermal cells during myogenesis. This suggests that the actions of these secreted molecules are not simply confined to the sphere of CNS development, but rather act in a more general fashion during development and throughout the lifetime of an organism. This review focuses on the non-neuronal activities of Slit proteins, highlighting a common role for the Slit family in cellular migration.
Resumo:
Primary olfactory axons expressing the same odorant receptor gene sort out and converge to fixed sites in the olfactory bulb. We examined the guidance of axons expressing the P2 odorant receptor when they were challenged with different cellular environments in vivo. In the mutant extratoes mouse, the olfactory bulb is lacking and is replaced by a fibrocellular mass. In these animals, primary olfactory axons form glomerular-like loci despite the absence of normal postsynaptic targets. P2 axons are able to sort out from other axons in this fibrocellular mass and converge to form loci of like axons. The sites of these loci along mediolateral and ventrodorsal axes were highly variable. Similar convergence was observed for larger subpopulations of axons expressing the same cell surface carbohydrates. The sorting out and convergence of like axons also occurred during regeneration following bulbectomy. Olfactory axon behaviour in these models demonstrates that sorting and convergence of axons are independent of the target, which instead provides distinct topographic cues for guidance. (C) 2003 Wiley-Liss, Inc.
Resumo:
HMX1 is a homeobox-containing transcription factor implicated in eye development and responsible for the oculo-auricular syndrome of Schorderet-Munier-Franceschetti. HMX1 is composed of two exons with three conserved domains in exon 2, a homeobox and two domains called SD1 and SD2. The function of the latter two domains remains unknown. During retinal development, HMX1 is expressed in a polarized manner and thus seems to play a role in the establishment of retinal polarity although its exact role and mode of action in eye development are unknown. Here, we demonstrated that HMX1 dimerized and that the SD1 and homeodomains are required for this function. In addition, we showed that proper nuclear localization requires the presence of the homeodomain. We also identified that EPHA6, a gene implicated in retinal axon guidance, is one of its targets in eye development and showed that a dimerized HMX1 is needed to inhibit EPHA6 expression.
Resumo:
Résumé :Une famille souffrant d'un nouveau syndrome oculo-auriculaire, appelé syndrome de Schorderet-Munier, a été identifiée. Ce syndrome est caractérisé par une déformation du lobe de l'oreille et des anomalies ophtalmiques, notamment une microphtalmie, une cataracte, un colobome et une dégénérescence rétinienne. Le gène impliqué dans ce syndrome est NKX5-3 codant un facteur de transcription contenant un homéodomaine. Chez les patient atteints, le gène comporte une délétion de 26 nucléotides provoquant probablement l'apparition d'un codon stop précoce. Ce gène n'est exprimé que dans certains organes dont les testicules et les ganglions cervicaux supérieurs, ainsi que dans les organes touchés par ce syndrome, à savoir le pavillon de l'oreille et l'oeil, surtout lors du développement embryonnaire. Au niveau de la rétine, NKX5-3 est présent dans la couche nucléaire interne et dans la couche dè cellules ganglionnaires et est exprimé de manière polarisée selon un axe temporal > nasal et ventral > dorsal. Son expression in vitro est régulée par Spl, un facteur de transcription exprimé durant le développement de l'oeil chez la souris. NKX5-3 semble lui-même provoquer une inhibition de l'expression de SHH et de EPHA6. Ces gènes sont tous les deux impliqués à leur manière dans le guidage des axones des cellules ganglionnaires de la rétine. Pris ensemble, ces résultats nous permettent donc d'émettre une hypothèse quant à un rôle potentiel de NKX5-3 dans ce processus.Abstract :A family with a new oculo-auricular syndrome, called syndrome of Schorderet-Munier, was identified. This disease is characterised by a deformation of the ear lobule and by several ophthalmic abnormalities, like microphthalmia, cataract, coloboma and a retinal degeneration. The gene, which causes this syndrome, is NKX5-3 coding for a transcription factor contaning a homeodomain. In the affectd patients, the defect consists of a deletion of 26 nucleotides probably producing a premature stop codon. This gene is only expressed in a few organs like testis and superior cervical ganglions, as well as in organs affected by this syndrome, namely the ear pinna and the eye, mainly during embryonic development. In the retina, NKX5-3 is present in the inner nuclear layer and in the ganglion cells layer. It is expressed along a gradient ranging from the temporal retina to nasal retina and from the ventral to the dorsal part. Its in vitro expression is regulated by Spl, a transcription factor expressed during the murine eye development. NKX5-3 seems to inhibit the expression of SHH and EPHA6. These genes are both implicated, in their own way, in the axon guidance of the retinal ganglion cells. Taken together, these results allow us to make an assumption about a potential role of NKX5-3 in this process.
Resumo:
PURPOSE: A homozygous mutation in the H6 family homeobox 1 (HMX1) gene is responsible for a new oculoauricular defect leading to eye and auricular developmental abnormalities as well as early retinal degeneration (MIM 612109). However, the HMX1 pathway remains poorly understood, and in the first approach to better understand the pathway's function, we sought to identify the target genes. METHODS: We developed a predictive promoter model (PPM) approach using a comparative transcriptomic analysis in the retina at P15 of a mouse model lacking functional Hmx1 (dmbo mouse) and its respective wild-type. This PPM was based on the hypothesis that HMX1 binding site (HMX1-BS) clusters should be more represented in promoters of HMX1 target genes. The most differentially expressed genes in the microarray experiment that contained HMX1-BS clusters were used to generate the PPM, which was then statistically validated. Finally, we developed two genome-wide target prediction methods: one that focused on conserving PPM features in human and mouse and one that was based on the co-occurrence of HMX1-BS pairs fitting the PPM, in human or in mouse, independently. RESULTS: The PPM construction revealed that sarcoglycan, gamma (35kDa dystrophin-associated glycoprotein) (Sgcg), teashirt zinc finger homeobox 2 (Tshz2), and solute carrier family 6 (neurotransmitter transporter, glycine) (Slc6a9) genes represented Hmx1 targets in the mouse retina at P15. Moreover, the genome-wide target prediction revealed that mouse genes belonging to the retinal axon guidance pathway were targeted by Hmx1. Expression of these three genes was experimentally validated using a quantitative reverse transcription PCR approach. The inhibitory activity of Hmx1 on Sgcg, as well as protein tyrosine phosphatase, receptor type, O (Ptpro) and Sema3f, two targets identified by the PPM, were validated with luciferase assay. CONCLUSIONS: Gene expression analysis between wild-type and dmbo mice allowed us to develop a PPM that identified the first target genes of Hmx1.
Resumo:
Guidepost cells present at and surrounding the midline provide guidance cues that orient the growing axons through commissures. Here we show that the transcription factor Nkx2.1 known to control the specification of GABAergic interneurons also regulates the differentiation of astroglia and polydendrocytes within the mouse anterior commissure (AC). Nkx2.1-positive glia were found to originate from three germinal regions of the ventral telencephalon. Nkx2.1-derived glia were observed in and around the AC region by E14.5. Thereafter, a selective cell ablation strategy showed a synergistic role of Nkx2.1-derived cells, both GABAergic interneurons and astroglia, towards the proper formation of the AC. Finally, our results reveal that the Nkx2.1-regulated cells mediate AC axon guidance through the expression of the repellent cue, Slit2. These results bring forth interesting insights about the spatial and temporal origin of midline telencephalic glia, and highlight the importance of neurons and astroglia towards the formation of midline commissures.