914 resultados para Axial fatigue
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
"Department of Army Project no. 5B99-01-004, Ordnance R and D Project no. TB2-0001, Office of Ordnance Research Project no. 1348, Contract no. DA-19-020-ORD-3250."
Resumo:
In-situ transmission electron microscopy (TEM) has developed rapidly over the last decade. In particular, with the inclusion of scanning probes in TEM holders, allows both mechanical and electrical testing to be performed whilst simultaneously imaging the microstructure at high resolution. In-situ TEM nanoindentation and tensile experiments require only an axial displacement perpendicular to the test surface. However, here, through the development of a novel in-situ TEM triboprobe, other surface characterisation experiments are now possible, with the introduction of a fully programmable 3D positioning system. Programmable lateral displacement control allows scratch tests to be performed at high resolution with simultaneous imaging of the changing microstructure. With the addition of repeated cyclic movements, both nanoscale fatigue and friction experiments can also now be performed. We demonstrate a range of movement profiles for a variety of applications, in particular, lateral sliding wear. The developed NanoLAB TEM triboprobe also includes a new closed loop vision control system for intuitive control during positioning and alignment. It includes an automated online calibration to ensure that the fine piezotube is controlled accurately throughout any type of test. Both the 3D programmability and the closed loop vision feedback system are demonstrated here.
Resumo:
Low cycle fatigue behavior of an O+B2 alloy was evaluated at 650 degrees C in ambient atmosphere under fully reversed total axial strain controlled mode. Three different microstructures, namely equiaxed O plus aged B2 (fine O plates in B2 matrix), lenticular O laths plus aged B2 and a pancake composite microstructure comprising equiaxed alpha 2, lenticular O and aged B2, were selected to study the effect of microstructure on low cycle fatigue behavior in this class of alloys. Distinct well-defined trends were observed in the cyclic stress-strain response curves depending on the microstructure. The cyclic stress response was examined in terms of softening or hardening and correlated with microstructural features and dislocation behavior. Fatigue life was analyzed in terms of standard Coffin-Manson and Basquin plots and for all microstructures a prevailing elastic strain regime was identified, with a single slope for microstructures equiaxed and composite and a double slope for lenticular O laths. (c) 2014 Elsevier B.V. All rights reserved.
Resumo:
A vast body of experimental data has been accumulated on the constant amplitude crack growth response of structural metals in moist laboratory air. Usually the data is presented as plots of crack growth rate, da/dN, against stress intensity range, DELTA K. In order to extrapolate this data to fatigue crack growth in more active or more inert environments, to crack growth under variable amplitude loading, or to crack growth under multi-axial or mixed mode loading, the mechanisms of crack advance and crack closure should be considered. This paper briefly reviews the crack closure phenomenon and discusses the dominant causes of accelerated and retarded growth under changes in environment or type of loading. It is argued that simple constant amplitude data is often surprisingly accurate when used to predict crack growth in more complex situations. However, there are some cases where constant amplitude data lead to dangerously non-conservative predictions of fatigue life.
Resumo:
This present study aimed to investigate the fatigue life of unused (new) endodontic instruments made of NiTi with control memory by Coltene™ and subjected to the multi curvature of a mandibular first molar root canal. Additionally, the instrument‟s structural behaviour was analysed through non-linear finite element analysis (FEA). The fatigue life of twelve Hyflex™ CM files was assessed while were forced to adopt a stance with multiple radius of curvature, similar to the ones usually found in a mandibular first molar root canal; nine of them were subjected to Pecking motion, a relative movement of axial type. To achieve this, it was designed an experimental setup with the aim of timing the instruments until fracture while worked inside a stainless steel mandibular first molar model with relative axial motion to simulate the pecking motion. Additionally, the model‟s root canal multi-curvature was confirmed by radiography. The non-linear finite element analysis was conducted using the computer aided design software package SolidWorks™ Simulation, in order to define the imposed displacement required by the FEA, it was necessary to model an endodontic instrument with simplified geometry using SolidWorks™ and subsequently analyse the geometry of the root canal CAD model. The experimental results shown that the instruments subjected to pecking motion displayed higher fatigue life values and higher lengths of fractured tips than those with only rotational relative movement. The finite element non-linear analyses shown, for identical conditions, maximum values for the first principal stress lower than the yield strength of the material and those were located in similar positions to the instrument‟s fracture location determined by the experimental testing results.
Resumo:
Standard Test Methods (e.g. ASTM, DIN) for materials characterization in general, and for fatigue in particular, do not contemplate specimens with complex geometries, as well as the combination of axial and in-plane bending loads in their methodologies. The present study refers to some patents and the new configuration or configurations of specimens (non-standardized by the status quo of test methods) and a device developed to induce axial and bending combined forces resultants from axial loads applied by any one test equipment (dynamic or monotonic) which possesses such limitation, towards obtaining more realistic results on the fatigue behavior, or even basic mechanical properties, from geometrically complex structures. Motivated by a specific and geometrically complex aeronautic structure (motor-cradle), non-standardized welded tubular specimens made from AISI 4130 steel were fatigue-tested at room temperature, by using a constant amplitude sinusoidal load of 20 Hz frequency, load ratio R = 0.1 with and without the above referred auxiliary fatigue apparatus. The results showed the fatigue apparatus was efficient for introducing higher stress concentration factor at the welded specimen joints, consequently reducing the fatigue strength when compared to other conditions. From the obtained results it is possible to infer that with small modifications the proposed apparatus will be capable to test a great variety of specimen configurations such as: squared tubes and plates with welded or melted junctions, as well as other materials such as aluminum, titanium, composites, polymeric, plastics, etc. © 2009 Bentham Science Publishers Ltd.
Resumo:
As compared with continuous rotary systems, reciprocating motion is believed to increase the fatigue resistance of NiTi instruments. We compared the cyclic fatigue and torsional resistance of reciprocating single-file systems and continuous rotary instrumentation systems in simulated root canals. Eighty instruments from the ProTaper Universal, WaveOne, MTwo, and Reciproc systems (n = 20) were submitted to dynamic bending testing in stainless-steel simulated curved canals. Axial displacement of the simulated canals was performed with half of the instruments (n = 10), with back-and-forth movements in a range of 1.5 mm. Time until fracture was recorded, and the number of cycles until instrument fracture was calculated. Cyclic fatigue resistance was greater for reciprocating systems than for rotary systems (P < 0.05). Instruments from the Reciproc and WaveOne systems significantly differed only when axial displacement occurred (P < 0.05). Instruments of the ProTaper Universal and MTwo systems did not significantly differ (P > 0.05). Cyclic fatigue and torsional resistance were greater for reciprocating systems than for continuous rotary systems, irrespective of axial displacement.
Resumo:
Most mechanical components experience multi-axial cyclic loading conditions during service. Experimental analysis of fatigue cracks under such conditions is not easy and most works tend to focus more on the simpler but less realistic case of uni-axial loading. Consequently, there are many uncertainties related to the load sequence effect that are now well known and are not normally incorporated into the growth models. The current work presents a new methodology for evaluating overload effect in biaxial fatigue cracks. The methodology includes evaluation of mixed-mode (KI and KII) stress intensity factor and the Crack Opening Displacement for samples with and without overload cycle under biaxial loading. The methodology is tested under a range of crack lengths. All crack-tip information is obtained with a hybrid methodology that combines experimental full-field digital image correlation data and Williams' elastic model describing the crack-tip field.
Resumo:
Introduction. This is a pilot study of quantitative electro-encephalographic (QEEG) comodulation analysis, which is used to assist in identifying regional brain differences in those people suffering from chronic fatigue syndrome (CFS) compared to a normative database. The QEEG comodulation analysis examines spatial-temporal cross-correlation of spectral estimates in the resting dominant frequency band. A pattern shown by Sterman and Kaiser (2001) and referred to as the anterior posterior dissociation (APD) discloses a significant reduction in shared functional modulation between frontal and centro-parietal areas of the cortex. This research attempts to examine whether this pattern is evident in CFS. Method. Eleven adult participants, diagnosed by a physician as having CFS, were involved in QEEG data collection. Nineteen-channel cap recordings were made in five conditions: eyes-closed baseline, eyes-open, reading task one, math computations task two, and a second eyes-closed baseline. Results. Four of the 11 participants showed an anterior posterior dissociation pattern for the eyes-closed resting dominant frequency. However, seven of the 11 participants did not show this pattern. Examination of the mean 8-12 Hz amplitudes across three cortical regions (frontal, central and parietal) indicated a trend of higher overall alpha levels in the parietal region in CFS patients who showed the APD pattern compared to those who did not have this pattern. All patients showing the pattern were free of medication, while 71% of those absent of the pattern were using antidepressant medications. Conclusions. Although the sample is small, it is suggested that this method of evaluating the disorder holds promise. The fact that this pattern was not consistently represented in the CFS sample could be explained by the possibility of subtypes of CFS, or perhaps co-morbid conditions. Further, the use of antidepressant medications may mask the pattern by altering the temporal characteristics of the EEG. The results of this pilot study indicate that further research is warranted to verify that the pattern holds across the wider population of CFS sufferers.