925 resultados para Autoimmune disease
Resumo:
La tolérance immunitaire dépend de la distinction entre le soi et le non soi par le système immunitaire. Un bris dans la tolérance immunitaire mène à l'auto-immunité, qui peut provoquer la destruction des organes, des glandes, des articulations ou du système nerveux central. Le diabète auto-immun, également connu sous le nom diabète juvénile et diabète de type 1, résulte d'une attaque auto-immune sur les cellules β pancréatiques sécrétrices d’insuline, localisées au niveau des îlots de Langerhans du pancréas. Bien que le diabète auto-immun soit traitable par une combinaison d’injections quotidiennes d’insuline d’origine exogène, de régime et d'exercices, beaucoup de complications chroniques peuvent se manifester chez les patients, y compris, mais non limitées à, la cécité, les maladies cardiovasculaires, l’insuffisance rénale et l'amputation. En raison des nombreuses complications liées au diabète auto-immun à long terme, la recherche continue afin de mieux comprendre tous les facteurs impliqués dans la progression de la maladie dans le but de développer de nouvelles thérapies qui empêcheront, renverseront et/ou traiteront cette maladie. Un rôle primordial dans la génération et l'entretien de la tolérance immunitaire a été attribué au nombre et à la fonction des sous-populations de cellules régulatrices. Une de ces populations est constituée de cellules T CD4-CD8- (double négatives, DN), qui ont été étudiées chez la souris et l'humain pour leur contribution à la tolérance périphérique, à la prévention des maladies et pour leur potentiel associé à la thérapie cellulaire. En effet, les cellules de T DN sont d'intérêt thérapeutique parce qu'elles montrent un potentiel immunorégulateur antigène-spécifique dans divers cadres expérimentaux, y compris la prévention du diabète auto-immun. D’ailleurs, en utilisant un système transgénique, nous avons démontré que les souris prédisposées au diabète auto-immun présentent peu de cellules T DN, et que ce phénotype contribue à la susceptibilité au diabète auto-immun. En outre, un transfert des cellules T DN est suffisant pour empêcher la progression vers le diabète chez les souris prédisposées au diabète auto-immun. Ces résultats suggèrent que les cellules T DN puissent présenter un intérêt thérapeutique pour les patients diabétiques. Cependant, nous devons d'abord valider ces résultats en utilisant un modèle non-transgénique, qui est plus physiologiquement comparable à l'humain. L'objectif principal de cette thèse est de définir la fonction immunorégulatrice des cellules T DN, ainsi que le potentiel thérapeutique de celles-ci dans la prévention du diabète auto-immun chez un modèle non-transgénique. Dans cette thèse, on démontre que les souris résistantes au diabète auto-immun présentent une proportion et nombre absolu plus élevés de cellules T DN non-transgéniques, lorsque comparées aux souris susceptibles. Cela confirme une association entre le faible nombre de cellules T DN et la susceptibilité à la maladie. On observe que les cellules T DN éliminent les cellules B activées in vitro par une voie dépendante de la voie perforine et granzyme, où la fonction des cellules T DN est équivalente entre les souris résistantes et prédisposées au diabète auto-immun. Ces résultats confirment que l'association au diabète auto-immun est due à une insuffisance en terme du nombre de cellules T DN, plutôt qu’à une déficience fonctionnelle. On démontre que les cellules T DN non-transgéniques éliminent des cellules B chargées avec des antigènes d'îlots, mais pas des cellules B chargées avec un antigène non reconnu, in vitro. Par ailleurs, on établit que le transfert des cellules T DN activées peut empêcher le développement du diabète auto-immun dans un modèle de souris non-transgénique. De plus, nous observons que les cellules T DN migrent aux îlots pancréatiques, et subissent une activation et une prolifération préférentielles au niveau des ganglions pancréatiques. D'ailleurs, le transfert des cellules T DN entraîne une diminution d'auto-anticorps spécifiques de l'insuline et de cellules B de centres germinatifs directement dans les îlots, ce qui corrèle avec les résultats décrits ci-dessus. Les résultats présentés dans cette thèse permettent de démontrer la fonction des cellules T DN in vitro et in vivo, ainsi que leur potentiel lié à la thérapie cellulaire pour le diabète auto-immun.
Resumo:
Similar pathophysiological mechanisms within autoimmune diseases have stimulated searches for common genetic roots. Polyautoimmunity is defined as the presence of more than one autoimmune disease in a single patient. When three or more autoimmune diseases coexist, this condition is called multiple autoimmune syndrome (MAS). We analyzed the presence of polyautoimmunity in 1,083 patients belonging to four autoimmune disease cohorts. Polyautoimmunity was observed in 373 patients (34.4%). Autoimmune thyroid disease (AITD) and Sjögren's syndrome (SS) were the most frequent diseases encountered. Factors significantly associated with polyautoimmunity were female gender and familial autoimmunity. Through a systematic literature review, an updated search was done for all MAS cases (January 2006–September 2011). There were 142 articles retrieved corresponding to 226 cases. Next, we performed a clustering analysis in which AITD followed by systemic lupus erythematosus and SS were the most hierarchical diseases encountered. Our results indicate that coexistence of autoimmune diseases is not uncommon and follows a grouping pattern. Polyautoimmunity is the term proposed for this association of disorders, which encompasses the concept of a common origin for these diseases.
Resumo:
Background: A primary characteristic of complex genetic diseases is that affected individuals tend to cluster in families (that is, familial aggregation). Aggregation of the same autoimmune condition, also referred to as familial autoimmune disease, has been extensively evaluated. However, aggregation of diverse autoimmune diseases, also known as familial autoimmunity, has been overlooked. Therefore, a systematic review and meta-analysis were performed aimed at gathering evidence about this topic. Methods: Familial autoimmunity was investigated in five major autoimmune diseases, namely, rheumatoid arthritis, systemic lupus erythematosus, autoimmune thyroid disease, multiple sclerosis and type 1 diabetes mellitus. Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines were followed. Articles were searched in Pubmed and Embase databases. Results: Out of a total of 61 articles, 44 were selected for final analysis. Familial autoimmunity was found in all the autoimmune diseases investigated. Aggregation of autoimmune thyroid disease, followed by systemic lupus erythematosus and rheumatoid arthritis, was the most encountered. Conclusions: Familial autoimmunity is a frequently seen condition. Further study of familial autoimmunity will help to decipher the common mechanisms of autoimmunity.
Resumo:
Sjögren's syndrome is an autoimmune disease characterized by sialoadenitis and elevated titers of autoantibodies. To assess whether it is possible to induce inflammatory changes in salivary gland tissues, a series of immunizations in Balb/c mice have been undertaken, using salivary gland extract, modified or not, added to several adjuvants. Mice's humoral immune response to salivary gland antigens was monitored by ELISA. Inflammatory cells infiltrating gland tissue were seen 3 months after immunization with salivary gland extract modified with pepsin (AgGp) and metaperiodate (AgGMp). Although pathological progression was not observed, the histopathological picture was similar to the initial phase of Sjögren's syndrome. In addition, a monoclonal antibody reactive with 3 gland polypeptides and anhydrase carbonic II was rescued among B cells from immunized mice. Thus, immunizations with modified autoantigens were able to initiate pathological damage to glandular tissue and stimulate the proliferation of auto-reactive B cells.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objective To compare autoantibody features in patients with primary biliary cirrhosis (PBC) and individuals presenting antimitochondria antibodies (AMAs) but no clinical or biochemical evidence of disease. Methods A total of 212 AMA-positive serum samples were classified into four groups: PBC (definite PBC, n = 93); PBC/autoimmune disease (AID; PBC plus other AID, n = 37); biochemically normal (BN) individuals (n = 61); and BN/AID (BN plus other AID, n = 21). Samples were tested by indirect immunofluorescence (IIF) on rat kidney (IIF-AMA) and ELISA [antibodies to pyruvate dehydrogenase E2-complex (PDC-E2), gp-210, Sp-100, and CENP-A/B]. AMA isotype was determined by IIF-AMA. Affinity of anti-PDC-E2 IgG was determined by 8 M urea-modified ELISA. Results High-titer IIF-AMA was more frequent in PBC and PBC/AID (57 and 70 %) than in BN and BN/AID samples (23 and 19 %) (p < 0.001). Triple isotype IIF-AMA (IgA/IgM/IgG) was more frequent in PBC and PBC/AID samples (35 and 43 %) than in BN sample (18 %; p = 0.008; p = 0.013, respectively). Anti-PDC-E2 levels were higher in PBC (mean 3.82; 95 % CI 3.36–4.29) and PBC/AID samples (3.89; 3.15–4.63) than in BN (2.43; 1.92–2.94) and BN/AID samples (2.52; 1.54–3.50) (p < 0.001). Anti-PDC-E2 avidity was higher in PBC (mean 64.5 %; 95 % CI 57.5–71.5 %) and PBC/AID samples (66.1 %; 54.4–77.8 %) than in BN samples (39.2 %; 30.9–37.5 %) (p < 0.001). PBC and PBC/AID recognized more cell domains (mitochondria, nuclear envelope, PML/sp-100 bodies, centromere) than BN (p = 0.008) and BN/AID samples (p = 0.002). Three variables were independently associated with established PBC: high-avidity anti-PDC-E2 (OR 4.121; 95 % CI 2.118–8.019); high-titer IIF-AMA (OR 4.890; 2.319–10.314); antibodies to three or more antigenic cell domains (OR 9.414; 1.924–46.060). Conclusion The autoantibody profile was quantitatively and qualitatively more robust in definite PBC as compared with AMA-positive biochemically normal individuals.
Resumo:
Thrombotic microangiopathies (TMAs) are a group of life-threatening disorders characterized by thrombocytopenia, fragmentation of erythrocytes, and ischemic organ damage. Genetic disorders, autoimmune disease, and cancer are risk factors for TMAs, but an additional, unknown trigger is needed to bring about acute disease. Recent studies suggest that DNA and histones are released during inflammation or infection and stimulate coagulation, thrombosis, thrombocytopenia, and organ damage in mice. We show that extracellular DNA and histones as well as markers of neutrophils are present in acute TMAs. Analysis of plasma from TMA patients of different clinical categories revealed elevated levels of DNA-histone complexes and myeloperoxidase (MPO) from neutrophil granules as well as S100A8/A9, a heterocomplex abundant in neutrophil cytosol. During therapy of thrombotic thrombocytopenic purpura, a subtype of TMAs often associated with severe ADAMTS13 (a disintegrin and metalloproteinase with thrombospondin type 1 motifs, member 13) deficiency, plasma DNA and MPO were inversely correlated with platelet counts, and their levels indicated amelioration or exacerbation of the disease. ADAMTS13 deficiency together with increased levels of plasma DNA and MPO were characteristic for acute thrombotic thrombocytopenic purpura. A minor infection often precedes acute TMA and extracellular DNA and histones released during the inflammatory response could provide the second hit, which precipitates acute TMA in patients with pre-existing risk factors.
Resumo:
Cardiovascular disease is a complex disorder involving multiple pathophysiological processes, several of which involve activation of toll-like receptors (TLRs) of the innate immune system. As sentinels of innate immunity TLRs are nonclonally germline-encoded molecular pattern recognition receptors that recognize exogenous as well as tissue-derived molecular dangers signals promoting inflammation. In addition to their expression in immune cells, TLRs are found in other tissues and cell types including cardiomyocytes, endothelial and vascular smooth muscle cells. TLRs are differentially regulated in various cell types by several cardiovascular risk factors such as hypercholesterolemia, hyperlipidemia, and hyperglycemia and may represent a key mechanism linking chronic inflammation, cardiovascular disease progression, and activation of the immune system. Modulation of TLR signaling by specific TLR agonists or antagonists, alone or in combination, may be a useful therapeutic approach to treat various cardiovascular inflammatory conditions such as atherosclerosis, peripheral arterial disease, secondary microvascular complications of diabetes, autoimmune disease, and ischemia reperfusion injury. In this paper we discuss recent developments and current evidence for the role of TLR in cardiovascular disease as well as the therapeutic potential of various compounds on inhibition of TLR-mediated inflammatory responses.
Resumo:
Cytokines are important mediators involved in the successful outcome of pregnancy. The concept of pregnancy as biased toward a Th2 immune response states that Th1 type cytokines are associated with pregnancy failure and that Th2 cytokines are protective and counteract pregnancy-related disorders. Studies at the level of the maternal-fetal interface, in the maternal circulation and in cells of peripheral blood have shown that the Th2 concept of pregnancy is an oversimplification. Both Th1 and Th2 type cytokines play a role at different stages of pregnancy and are adapted to the localization and function of cells and tissues. The changes of local and systemic cytokine patterns during pregnancy correspond to neuroendocrine changes with hormones as powerful modulators of cytokine expression. Several autoimmune disorders show a modulation of disease activity during and after pregnancy. In rheumatic diseases with a predominance of a Th1 immune response, a shift to a Th2 type immune response during pregnancy has been regarded as beneficial. Studies of pregnant patients with rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) have shown a cytokine expression similar to that found in healthy pregnant women. Significant differences were present only for a few cytokines and seemed related to the activity of the underlying disease. Interestingly, a gestational increase of cytokine inhibitors interleukin 1 receptor antagonist (IL-1ra) and soluble tumor necrosis factor receptor (sTNFR) in the circulation corresponded to low disease activity in RA. The influence of hormones and cytokines on autoimmune disease is an issue for further study.
Resumo:
Atherosclerosis is a chronic, complex arterial disease characterized by intimal lipid accumulation and inflammation. A unique lipid-binding molecule, namely cluster of differentiation 1d (CD1d), may impact atherosclerosis. Structurally, CD1d acts as a nonpolymorphic cell-surface receptor, resembling the major histocompatibility complex-I (MHC-I). While MHC-I restricts peptide antigen presentation to T cells, CD1d presents lipid antigens to T cells named CD1d-restrictedd T cells. Although increased expression of CD1d has been found in human plaques, the exact nature of CD1d-recognized lipids in atherosclerosis remains to be determined. Three groups of lipids may undergo oxidation in atherosclerosis producing atherogenic lipids: phospholipids, fatty acids, and cholesterol. The central hypothesis is that CD1d recognizes and present oxidative lipids to activate CD1d-restricted T cells, and trigger proinflammatory signal transduction In the first part of this study, oxidative phospholipids were identified and characterized as potential autoantigen for CD1d-restricted T cells. Derived from phospholipid 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine by oxidization, 1-palmitoyl-2-glutaryl-sn-glycero-3-phosphocholine (PGPC) is commonly found in atherosclerotic plaques. Upon stimulation with PGPC, spleen-derived CD1d-restricted T cells produced higher levels of cytokines and proliferated at higher rates than those without PGPC stimulation. CD1d deficiency compromised the PGPC-triggered T cell activation, suggesting that PGPC may function as a potentially novel autoantigen for T cells in atherosclerosis. In the second part of this study, CD1d-mediated proinflammatory signaling was evaluated in murine models. Enhanced CD1 expression occurred in spleens of db/db mice with hyperlipidemia. Tumor necrosis factor-alpha (TNF-α) was increased in db/db spleen, while TNF-α receptor expression augmented in the db/db murine heart, in comparison with those in normal mice. The nuclear factor-κ B (NF-κB) expression was enhanced in the db/db heart, whereas CD1d-null mice showed lower NF-κB, implying the involvement of CD1d in inflammation of the spleen and heart tissues in the mice with hyperlipidemia. The current study has identified PGPC as a novel lipid antigen recognized by CD1d-restricted T cells in atherosclerosis. The animal study has also provided evidence that CD1d regulates NF-κB-mediated proinflammatory signaling. Hence, CD1d-restricted T cell responses to autolipid antigen and mediated inflammatory signal may represent a new molecular pathway that triggers cardiovascular tissue injury in atherosclerosis and hyperlipidemia.
Alcoholic Cirrhosis Increases Risk for Autoimmune Diseases: A Nationwide Registry-Based Cohort Study
Resumo:
BACKGROUND & AIMS Alcoholic cirrhosis is associated with hyperactivation and dysregulation of the immune system. In addition to its ability to increase risk for infections, it also may increase the risk for autoimmune diseases. We studied the incidence of autoimmune diseases among patients with alcoholic cirrhosis vs controls in Denmark. METHODS We collected data from nationwide health care registries to identify and follow up all citizens of Denmark diagnosed with alcoholic cirrhosis from 1977 through 2010. Each patient was matched with 5 random individuals from the population (controls) of the same sex and age. The incidence rates of various autoimmune diseases were compared between patients with cirrhosis and controls and adjusted for the number of hospitalizations in the previous year (a marker for the frequency of clinical examination). RESULTS Of the 24,679 patients diagnosed with alcoholic cirrhosis, 532 developed an autoimmune disease, yielding an overall increased adjusted incidence rate ratio (aIRR) of 1.36 (95% confidence interval [CI], 1.24-1.50). The strongest associations were with Addison's disease (aIRR, 2.47; 95% CI, 1.04-5.85), inflammatory bowel disease (aIRR, 1.56; 95% CI, 1.26-1.92), celiac disease (aIRR, 5.12; 95% CI, 2.58-10.16), pernicious anemia (aIRR, 2.35; 95% CI, 1.50-3.68), and psoriasis (aIRR, 4.06; 95% CI, 3.32-4.97). There was no increase in the incidence rate for rheumatoid arthritis (aIRR, 0.89; 95% CI, 0.69-1.15); the incidence rate for polymyalgia rheumatica decreased in patients with alcoholic cirrhosis compared with controls (aIRR, 0.47; 95% CI, 0.33-0.67). CONCLUSIONS Based on a nationwide cohort study of patients in Denmark, alcoholic cirrhosis is a risk factor for several autoimmune diseases.
Resumo:
Autoimmune diseases such as systemic lupus erythematosus are complex genetic traits with contributions from major histocompatibility complex (MHC) genes and multiple unknown non-MHC genes. Studies of animal models of lupus have provided important insight into the immunopathogenesis of disease, and genetic analyses of these models overcome certain obstacles encountered when studying human patients. Genome-wide scans of different genetic crosses have been used to map several disease-linked loci in New Zealand hybrid mice. Although some consensus exists among studies mapping the New Zealand Black (NZB) and New Zealand White (NZW) loci that contribute to lupus-like disease, considerable variability is also apparent. A variable in these studies is the genetic background of the non-autoimmune strain, which could influence genetic contributions from the affected strain. A direct examination of this question was undertaken in the present study by mapping NZB nephritis-linked loci in backcrosses involving different non-autoimmune backgrounds. In a backcross with MHC-congenic C57BL/6J mice, H2z appeared to be the strongest genetic determinant of severe lupus nephritis, whereas in a backcross with congenic BALB/cJ mice, H2z showed no influence on disease expression. NZB loci on chromosomes 1, 4, 11, and 14 appeared to segregate with disease in the BALB/cJ cross, but only the influence of the chromosome 1 locus spanned both crosses and showed linkage with disease when all mice were considered. Thus, the results indicate that contributions from disease-susceptibility loci, including MHC, may vary markedly depending on the non-autoimmune strain used in a backcross analysis. These studies provide insight into variables that affect genetic heterogeneity and add an important dimension of complexity for linkage analyses of human autoimmune disease.
Resumo:
Inflammatory infiltrates in tissue-specific autoimmune disease comprise a collection of T cells with specificity for an antigen in the target organ. These specific cells recruit a population of nonspecific T cells and macrophages. The rare tissue-specific T cells in the infiltrate have the capacity to regulate both the influx and the efflux of cells from the tissue. Administration of an altered peptide ligand for the specific T cell which triggers autoimmunity can lead to the regression of the entire inflammatory ensemble in a few hours. Interleukin 4 is a critical cytokine involved in the regression of the inflammatory infiltrate.