969 resultados para Augmented-wave Method


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Horiuti-Polanyi mechanism has been considered to be universal for explaining the mechanisms of hydrogenation reactions in heterogeneous catalysis for several decades. In this work, we examine this mechanism for the hydrogenation of acrolein, the simplest alpha,beta-unsaturated aldehyde, in gold-based systems as well as some other metals using extensive first-principles calculations. It is found that a non-Horiuti-Polanyi mechanism is favored in some cases. Furthermore, the physical origin and trend of this mechanism are revealed and discussed regarding the geometrical and electronic effects, which will have a significant influence on current understandings on heterogeneous catalytic hydrogenation reactions and the future catalyst design for these reactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solar hydrogen production assisted with semiconductor materials is a promising way to provide alternative energy sources in the future. Such a photocatalytic reaction normally takes place on the active sites of the catalysts surface, and the identification of the active sites is crucial for understanding the photocatalytic reaction mechanism and further improving the photocatalytic efficiency. However, the active sites of model catalysts are still largely disputed because of their structural complexity. Conventionally, H-2 evolution from solar water splitting over Pt/TiO2 is widely deemed to take place on metallic Pt nanoparticles. Oppositely, we report through a combined experimental and theoretical approach, that metallic Pt nanoparticles have little contribution to the activity of photocatalytic H-2 evolution; the oxidized Pt species embedded on the TiO2 surface are the key active sites and primarily responsible for the activity of the hydrogen evolution Pt/TiO2 photocatalyst.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reactivity of supported gold catalysts is a hot topic in catalysis for many years. This communication reports an investigation on the dissociation of molecular hydrogen at the perimeter sites of Au/TiO2 and the spillover of hydrogen atoms from the gold to the support using density functional theory calculations. It is found that the heterolytic dissociation is favoured in comparison with homolytic dissociation of molecular hydrogen at the perimeter sites. However, the surface oxygen of the rutile TiO2(110) surface at these sites can be readily passivated by the formed OH, suggesting that further dissociation of molecular hydrogen may occur at pure gold sites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitrogen-doped graphene (N-graphene) was reported to exhibit a good activity experimentally as an electrocatalyst of oxygen reduction reaction (ORR) on the cathode of fuel cells under the condition of electropotential of similar to 0.04 V (vs. NNE) and pH of 14. This material is promising to replace or partially replace the conventionally used Pt. In order to understand the experimental results. ORR catalyzed by N-graphene is studied using density functional theory (DFT) calculations under experimental conditions taking the solvent, surface adsorbates, and coverages into consideration. Two mechanisms, i.e., dissociative and associative mechanisms, over different N-doping configurations are investigated. The results show that N-graphene surface is covered by O with 1/6 monolayer, which is used for reactions in this work. The transition state of each elementary step was identified using four different approaches, which give rise to a similar chemistry. A full energy profile including all the reaction barriers shows that the associative mechanism is more energetically favored than the dissociative one and the removal of O species from the surface is the rate-determining step. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Partial hydrogenation of acrolein, the simplest alpha, beta-unsaturated aldehyde, is not only a model system to understand the selectivity in heterogeneous catalysis, but also technologically an important reaction. In this work, the reaction on Pt(211) and Au(211) surfaces is thoroughly investigated using density functional theory calculations. The formation routes of three partial hydrogenation products, namely propenol, propanal and enol, on both metals are studied. It is found that the pathway to produce enol is kinetically favoured on Pt while on Au the route of forming propenol is preferred. Our calculations also show that the propanal formation follows an indirect pathway on Pt(211). An energy decomposition method to analyze the barrier is utilized to understand the selectivities at Pt(211) and Au(211), which reveals that the interaction energies between the reactants involved in the transition states play a key role in determining the selectivity difference.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the nuclear quadrupole interaction at the nitrogen sites in the molecular and crystalline phases of the imidazole compound. We use PAW which is a state-of-the-art method to calculate the electronic structure and electric field gradient at the nucleus in the framework of the density functional theory. The quadrupole frequencies at both imino and amino N sites are in excellent agreement with measurements. This is the first time that the electric field gradient at crystalline imidazole is correctly treated by an ab initio theoretical approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work the interaction of cyclopentene with a set of InP(001) surfaces is investigated by means of the density functional theory. We propose a simple approach for evaluating the surface strain and based on it we have found a linear relation between bond and strain energies and the adsorption energy. Our results also indicate that the higher the bond energy, the more disperse the charge distribution is around the adsorption site associated to the high occupied state, a key feature that characterizes the adsorption process. Different adsorption coverages are used to evaluate the proposed equation. Our results suggest that the proposed approach might be extended to other systems where the interaction of the semiconductor surface and the molecule is restricted to first neighbor sites. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, a 2.0 nm nanoparticle (low limit synthesized system) is compared to possible simplified models: passivated clusters, small (1.3 nm) nanoparticles and sets of plane surfaces. Our density functional theory results suggest that even when geometric aspects are properly described by the simplifications considered, electronic properties might be very different, especially when edge atoms are not properly taken into account in the nanoparticle`s modeling. In addition, we propose a protocol that might help future theoretical descriptions of nanoparticles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we employ the state-of-the-art pseudopotential method, within a generalized gradient approximation to the density functional theory, combined with a recently developed method for the calculation of HREELS spectra to study a series of different proposed models for carbon incorporation on the silicon (001) surface. A fully discussion on the geometry, energetics and specially the comparison between experimental and theoretical STM images and electron energy loss spectra indicate that the Si(100)-c(4 x 4) is probably induced by Si-C surface dinners, in agreement with recent experimental findings. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we employ the state of the art pseudopotential method, within a generalized gradient approximation to the density functional theory, to investigate the adsorption process of furan on the silicon (001) surface. A direct comparison of different adsorption structures with x-ray photoelectron spectroscopy (XPS), ultra-violet photoelectron spectroscopy (UPS), high resolution electron energy loss spectroscopy (HREELS), near edge x-ray absorption fine structure (NEXAFS), and high resolution spectroscopy experimental data allows us to identify the [4 + 2] cycloaddition reaction as the most probable adsorbate. In addition, theoretical scanning tunnelling microscopy (STM) images are presented, with a view to contributing to further experimental investigations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Synchrotron infrared (IR) and micro-Raman spectra of natrolites containing alkaline-earth ions (Ca2+, Sr2+, and Ba2+) and heavy metals (Cd2+, Pb2+, and Ag+) as extra-framework cations (EFCs) were measured under ambient conditions. Complementing our previous spectroscopic investigations of natrolites with monovalent alkali metal (Li+, Na+, K+, Rb +, and Cs+) EFCs, we establish a correlation between the redshifts of the frequencies of the 4-ring and helical 8-ring units and the size of the EFCs in natrolite. Through ab initio calculations we have derived structural models of Ca2+- and Ag+-exchanged natrolites with hydrogen atoms, and found that the frequency shifts in the H - O - H bending mode and the differences in the O - H stretching vibration modes can be correlated with the orientations of the water molecules along the natrolite channel. Assuming that the members of a solid solution series behave as an ideal mixture, we will be able to use spectroscopy to probe compositions. Deviation from ideal behavior might indicate the occurrence of phase separation on various length scales. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The physical properties of small rhodium clusters, Rh-n, have been in debate due to the shortcomings of density functional theory (DFT). To help in the solution of those problems, we obtained a set of putative lowest energy structures for small Rh-n (n = 2-15) clusters employing hybrid-DFT and the generalized gradient approximation (GGA). For n = 2-6, both hybrid and GGA functionals yield similar ground-state structures (compact), however, hybrid favors compact structures for n = 7-15, while GGA favors open structures based on simple cubic motifs. Thus, experimental results are crucial to indicate the correct ground-state structures, however, we found that a unique set of structures (compact or open) is unable to explain all available experimental data. For example, the GGA structures (open) yield total magnetic moments in excellent agreement with experimental data, while hybrid structures (compact) have larger magnetic moments compared with experiments due to the increased localization of the 4d states. Thus, we would conclude that GGA provides a better description of the Rh-n clusters, however, a recent experimental-theoretical study [ Harding et al., J. Chem. Phys. 133, 214304 (2010)] found that only compact structures are able to explain experimental vibrational data, while open structures cannot. Therefore, it indicates that the study of Rh-n clusters is a challenging problem and further experimental studies are required to help in the solution of this conundrum, as well as a better description of the exchange and correlation effects on the Rh n clusters using theoretical methods such as the quantum Monte Carlo method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By combining first-principles electronic structure calculations and existing time-differential gamma-gamma perturbed-angular-correlation experiments we studied the site localization, the local environment, and the electronic structure of Cd impurities in sapphire (alpha-Al2O3) single crystals in different charged states. The ab initio calculations were performed with the full-potential augmented plane wave plus local orbitals method and the projector augmented wave method. Comparing the calculated electric-field-gradient tensor at the Cd nuclei in the alpha-Al2O3 host lattice and the corresponding available experimental values, we have seen that it is equally possible for Cd to replace an Al atom (in a negative charge state) or to be placed in an interstitial site (in a neutral charge state). To finally address the issue of the Cd impurity localization, we performed formation energy calculations. These results have shown that Cd placed in the substitutional Al site, in the negatively charged state, is the most probable configuration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using fixed node diffusion quantum Monte Carlo (FN-DMC) simulations and density functional theory (DFT) within the generalized gradient approximations, we calculate the total energies of the relaxed and unrelaxed neutral, cationic, and anionic aluminum clusters, Al-n (n = 1-13). From the obtained total energies, we extract the ionization potential and electron detachment energy and compare with previous theoretical and experimental results. Our results for the electronic properties from both the FN-DMC and DFT calculations are in reasonably good agreement with the available experimental data. A comparison between the FN-DMC and DFT results reveals that their differences are a few tenths of electron volt for both the ionization potential and the electron detachment energy. We also observe two distinct behaviors in the electron correlation contribution to the total energies from smaller to larger clusters, which could be assigned to the structural transition of the clusters from planar to three-dimensional occurring at n = 4 to 5.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The encapsulation of magnetic transition-metal (TM) clusters inside carbon cages (fullerenes, nanotubes) has been of great interest due to the wide range of applications, which spread from medical sensors in magnetic resonance imaging to photonic crystals. Several theoretical studies have been reported; however, our atomistic understanding of the physical properties of encapsulated magnetic TM 3d clusters is far from satisfactory. In this work, we will report general trends, derived from density functional theory within the generalized gradient approximation proposed by Perdew, Burke, and Ernzerhof (PBE), for the encapsulation properties of the TMm@C-n (TM = Fe, Co, Ni; m = 2-6, n = 60,70,80,90) systems. Furthermore, to understand the role of the van der Waals corrections to the physical properties, we employed the empirical Grimme's correction (PBE + D2). We found that both PBE and PBE + D2 functionals yield almost the same geometric parameters, magnetic and electronic properties, however, PBE + D2 strongly enhances the encapsulation energy. We found that the center of mass of the TMm clusters is displaced towards the inside C-n surfaces, except for large TMm clusters (m = 5 and 6). For few cases, e. g., Co-4 and Fe-4, the encapsulation changes the putative lowest-energy structure compared to the isolated TMm clusters. We identified few physical parameters that play an important role in the sign and magnitude of the encapsulation energy, namely, cluster size, fullerene equatorial diameter, shape, curvature of the inside C-n surface, number of TM atoms that bind directly to the inside C-n surface, and the van der Waals correction. The total magnetic moment of encapsulated TMm clusters decreases compared with the isolated TMm clusters, which is expected due to the hybridization of the d-p states, and strongly depends on the size and shape of the fullerene cages.