966 resultados para Auditory-visual teaching


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper gives an introduction to "Interculture TV", an educational videocast project initiated by the Department of "Intercultural Studies and Business Communications" at the Friedrich Schiller University, Jena. The project provides open access to audio-visual teaching/learning materials produced by intercultural student work groups and offers opportunities for cooperation. Starting from a definition of the term "educast", the article analyses the videocast episodes on Interculture TV and discusses their potential for inter-cultural instruction and learning.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Objective structured clinical examinations (OSCEs) are a
commonly used method of assessing clinical competency in healthcare education. They can providean opportunity to observe candidates interacting with patients.
There are many challenges in using real patients in OSCEs, and increasingly standardised patients are being used as a preference. However, by using standardised patients there is a risk of making the encounter arti?cial and removed from actual clinical practice.
Context: Efforts made in terms of cognitive, auditory, visual, tactile, psychological and emotional cues can minimise the differences between a simulated
and real clinical scenario. However, a number of factors, including feasibility, cost and usability, need to be considered if such techniques are to be practicable
within an OSCE framework.
Innovation: This article describes a series of techniques that have been used in our institution to enhance the realism of a standardised patient encounter in an
OSCE. Efforts in preparing standardised patient roles, and how they portray these roles, will be considered. A wide variety of equipment can also be used in
combination with a patient and the surrounding environment, which can further enhance the authenticity of the simulated scenario.
Implications: By enhancing the realism in simulated patient OSCE encounters, there is potential to trigger more authentic conscious responses from candidates and implicit reactions that the candidates themselves may be less
aware of. Furthermore, using such techniques may allow faculty members to select scenarios that were previously not thought possible in an OSCE

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Multisensory stimuli can improve performance, facilitating RTs on sensorimotor tasks. This benefit is referred to as the redundant signals effect (RSE) and can exceed predictions on the basis of probability summation, indicative of integrative processes. Although an RSE exceeding probability summation has been repeatedly observed in humans and nonprimate animals, there are scant and inconsistent data from nonhuman primates performing similar protocols. Rather, existing paradigms have instead focused on saccadic eye movements. Moreover, the extant results in monkeys leave unresolved how stimulus synchronicity and intensity impact performance. Two trained monkeys performed a simple detection task involving arm movements to auditory, visual, or synchronous auditory-visual multisensory pairs. RSEs in excess of predictions on the basis of probability summation were observed and thus forcibly follow from neural response interactions. Parametric variation of auditory stimulus intensity revealed that in both animals, RT facilitation was limited to situations where the auditory stimulus intensity was below or up to 20 dB above perceptual threshold, despite the visual stimulus always being suprathreshold. No RT facilitation or even behavioral costs were obtained with auditory intensities 30-40 dB above threshold. The present study demonstrates the feasibility and the suitability of behaving monkeys for investigating links between psychophysical and neurophysiologic instantiations of multisensory interactions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study analyzed high-density event-related potentials (ERPs) within an electrical neuroimaging framework to provide insights regarding the interaction between multisensory processes and stimulus probabilities. Specifically, we identified the spatiotemporal brain mechanisms by which the proportion of temporally congruent and task-irrelevant auditory information influences stimulus processing during a visual duration discrimination task. The spatial position (top/bottom) of the visual stimulus was indicative of how frequently the visual and auditory stimuli would be congruent in their duration (i.e., context of congruence). Stronger influences of irrelevant sound were observed when contexts associated with a high proportion of auditory-visual congruence repeated and also when contexts associated with a low proportion of congruence switched. Context of congruence and context transition resulted in weaker brain responses at 228 to 257 ms poststimulus to conditions giving rise to larger behavioral cross-modal interactions. Importantly, a control oddball task revealed that both congruent and incongruent audiovisual stimuli triggered equivalent non-linear multisensory interactions when congruence was not a relevant dimension. Collectively, these results are well explained by statistical learning, which links a particular context (here: a spatial location) with a certain level of top-down attentional control that further modulates cross-modal interactions based on whether a particular context repeated or changed. The current findings shed new light on the importance of context-based control over multisensory processing, whose influences multiplex across finer and broader time scales.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In immediate recall tasks, visual recency is substantially enhanced when output interference is low (Cowan, Saults, Elliott, & Moreno, 2002; Craik, 1969) whereas auditory recency remains high even under conditions of high output interference. Ibis auditory advantage has been interpreted in terms of auditory resistance to output interference (e.g., Neath & Surprenant, 2003). In this study the auditory-visual difference at low output interference re-emerged when ceiling effects were accounted for, but only with spoken output. With written responding the auditory advantage remained significantly larger with high than with low output interference. These new data suggest that both superior auditory encoding and modality-specific output interference contribute to the classic auditory-visual modality effect.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

What this paper adds? What is already known on the subject? Multi-sensory treatment approaches have been shown to impact outcome measures positively, such as accuracy of speech movement patterns and speech intelligibility in adults with motor speech disorders, as well as in children with apraxia of speech, autism and cerebral palsy. However, there has been no empirical study using multi-sensory treatment for children with speech sound disorders (SSDs) who demonstrate motor control issues in the jaw and orofacial structures (e.g. jaw sliding, jaw over extension, inadequate lip rounding/retraction and decreased integration of speech movements). What this paper adds? Findings from this study indicate that, for speech production disorders where both the planning and production of spatiotemporal parameters of movement sequences for speech are disrupted, multi-sensory treatment programmes that integrate auditory, visual and tactile–kinesthetic information improve auditory and visual accuracy of speech production. The training (practised in treatment) and test words (not practised in treatment) both demonstrated positive change in most participants, indicating generalization of target features to untrained words. It is inferred that treatment that focuses on integrating multi-sensory information and normalizing parameters of speech movements is an effective method for treating children with SSDs who demonstrate speech motor control issues.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of the present study was to investigate the effect of sensory modality on short-term memory recall. An exploratory, cross-sectional study was performed. A total of 119 individuals participated. There were 70 female and 49 male subjects, aged 4 to 80 years (M=34,3). The participants were presented with 12 different objects in auditory, visual or auditory/visual mode over a period of 24 seconds. The participants were then asked to recall as many of the 12 objects as possible in any order. The study took place at a day nursery, junior high schools, meetings with elderly and adults with house calls. Non-probability samples were used. The conclusion was that visual short-term memory generated the highest recollection and that adults had the highest mean on the different stimuli. A visual element is recommended at recollection.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This four-experiment series sought to evaluate the potential of children with neurosensory deafness and cochlear implants to exhibit auditory-visual and visual-visual stimulus equivalence relations within a matching-to-sample format. Twelve children who became deaf prior to acquiring language (prelingual) and four who became deaf afterwards (postlingual) were studied. All children learned auditory-visual conditional discriminations and nearly all showed emergent equivalence relations. Naming tests, conducted with a subset of the: children, showed no consistent relationship to the equivalence-test outcomes.. This study makes several contributions: to the literature on stimulus equivalence. First; it demonstrates that both pre- and postlingually deaf children-can: acquire auditory-visual equivalence-relations after cochlear implantation, thus demonstrating symbolic functioning. Second, it directs attention to a population that may be especially interesting for researchers seeking to analyze the relationship. between speaker and listener repertoires. Third, it demonstrates the feasibility of conducting experimental studies of stimulus control processes within the limitations of a hospital, which these children must visit routinely for the maintenance of their cochlear implants.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thinking the school as an institution of equal access for every type of kid, youthful, and adult, to education, It was thought for this assignment to focus in inclusive education in defense of the right of all students to be together, learning and participating without any kind of discrimination. Knowing the large scope of the theme Inclusive Education , subdivided by MEC in four types of disabilities, as follows: auditory, visual, motor and intellectual. It was decided to approach here; intellectual disability, to be a disability that covers a vast number of limitations and that is largely present in the school environment. This work will sought to better understand this deficiency and the work with students carrying it into the classroom

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The research activity carried out during the PhD course was focused on the development of mathematical models of some cognitive processes and their validation by means of data present in literature, with a double aim: i) to achieve a better interpretation and explanation of the great amount of data obtained on these processes from different methodologies (electrophysiological recordings on animals, neuropsychological, psychophysical and neuroimaging studies in humans), ii) to exploit model predictions and results to guide future research and experiments. In particular, the research activity has been focused on two different projects: 1) the first one concerns the development of neural oscillators networks, in order to investigate the mechanisms of synchronization of the neural oscillatory activity during cognitive processes, such as object recognition, memory, language, attention; 2) the second one concerns the mathematical modelling of multisensory integration processes (e.g. visual-acoustic), which occur in several cortical and subcortical regions (in particular in a subcortical structure named Superior Colliculus (SC)), and which are fundamental for orienting motor and attentive responses to external world stimuli. This activity has been realized in collaboration with the Center for Studies and Researches in Cognitive Neuroscience of the University of Bologna (in Cesena) and the Department of Neurobiology and Anatomy of the Wake Forest University School of Medicine (NC, USA). PART 1. Objects representation in a number of cognitive functions, like perception and recognition, foresees distribute processes in different cortical areas. One of the main neurophysiological question concerns how the correlation between these disparate areas is realized, in order to succeed in grouping together the characteristics of the same object (binding problem) and in maintaining segregated the properties belonging to different objects simultaneously present (segmentation problem). Different theories have been proposed to address these questions (Barlow, 1972). One of the most influential theory is the so called “assembly coding”, postulated by Singer (2003), according to which 1) an object is well described by a few fundamental properties, processing in different and distributed cortical areas; 2) the recognition of the object would be realized by means of the simultaneously activation of the cortical areas representing its different features; 3) groups of properties belonging to different objects would be kept separated in the time domain. In Chapter 1.1 and in Chapter 1.2 we present two neural network models for object recognition, based on the “assembly coding” hypothesis. These models are networks of Wilson-Cowan oscillators which exploit: i) two high-level “Gestalt Rules” (the similarity and previous knowledge rules), to realize the functional link between elements of different cortical areas representing properties of the same object (binding problem); 2) the synchronization of the neural oscillatory activity in the γ-band (30-100Hz), to segregate in time the representations of different objects simultaneously present (segmentation problem). These models are able to recognize and reconstruct multiple simultaneous external objects, even in difficult case (some wrong or lacking features, shared features, superimposed noise). In Chapter 1.3 the previous models are extended to realize a semantic memory, in which sensory-motor representations of objects are linked with words. To this aim, the network, previously developed, devoted to the representation of objects as a collection of sensory-motor features, is reciprocally linked with a second network devoted to the representation of words (lexical network) Synapses linking the two networks are trained via a time-dependent Hebbian rule, during a training period in which individual objects are presented together with the corresponding words. Simulation results demonstrate that, during the retrieval phase, the network can deal with the simultaneous presence of objects (from sensory-motor inputs) and words (from linguistic inputs), can correctly associate objects with words and segment objects even in the presence of incomplete information. Moreover, the network can realize some semantic links among words representing objects with some shared features. These results support the idea that semantic memory can be described as an integrated process, whose content is retrieved by the co-activation of different multimodal regions. In perspective, extended versions of this model may be used to test conceptual theories, and to provide a quantitative assessment of existing data (for instance concerning patients with neural deficits). PART 2. The ability of the brain to integrate information from different sensory channels is fundamental to perception of the external world (Stein et al, 1993). It is well documented that a number of extraprimary areas have neurons capable of such a task; one of the best known of these is the superior colliculus (SC). This midbrain structure receives auditory, visual and somatosensory inputs from different subcortical and cortical areas, and is involved in the control of orientation to external events (Wallace et al, 1993). SC neurons respond to each of these sensory inputs separately, but is also capable of integrating them (Stein et al, 1993) so that the response to the combined multisensory stimuli is greater than that to the individual component stimuli (enhancement). This enhancement is proportionately greater if the modality-specific paired stimuli are weaker (the principle of inverse effectiveness). Several studies have shown that the capability of SC neurons to engage in multisensory integration requires inputs from cortex; primarily the anterior ectosylvian sulcus (AES), but also the rostral lateral suprasylvian sulcus (rLS). If these cortical inputs are deactivated the response of SC neurons to cross-modal stimulation is no different from that evoked by the most effective of its individual component stimuli (Jiang et al 2001). This phenomenon can be better understood through mathematical models. The use of mathematical models and neural networks can place the mass of data that has been accumulated about this phenomenon and its underlying circuitry into a coherent theoretical structure. In Chapter 2.1 a simple neural network model of this structure is presented; this model is able to reproduce a large number of SC behaviours like multisensory enhancement, multisensory and unisensory depression, inverse effectiveness. In Chapter 2.2 this model was improved by incorporating more neurophysiological knowledge about the neural circuitry underlying SC multisensory integration, in order to suggest possible physiological mechanisms through which it is effected. This endeavour was realized in collaboration with Professor B.E. Stein and Doctor B. Rowland during the 6 months-period spent at the Department of Neurobiology and Anatomy of the Wake Forest University School of Medicine (NC, USA), within the Marco Polo Project. The model includes four distinct unisensory areas that are devoted to a topological representation of external stimuli. Two of them represent subregions of the AES (i.e., FAES, an auditory area, and AEV, a visual area) and send descending inputs to the ipsilateral SC; the other two represent subcortical areas (one auditory and one visual) projecting ascending inputs to the same SC. Different competitive mechanisms, realized by means of population of interneurons, are used in the model to reproduce the different behaviour of SC neurons in conditions of cortical activation and deactivation. The model, with a single set of parameters, is able to mimic the behaviour of SC multisensory neurons in response to very different stimulus conditions (multisensory enhancement, inverse effectiveness, within- and cross-modal suppression of spatially disparate stimuli), with cortex functional and cortex deactivated, and with a particular type of membrane receptors (NMDA receptors) active or inhibited. All these results agree with the data reported in Jiang et al. (2001) and in Binns and Salt (1996). The model suggests that non-linearities in neural responses and synaptic (excitatory and inhibitory) connections can explain the fundamental aspects of multisensory integration, and provides a biologically plausible hypothesis about the underlying circuitry.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Comprehending speech is one of the most important human behaviors, but we are only beginning to understand how the brain accomplishes this difficult task. One key to speech perception seems to be that the brain integrates the independent sources of information available in the auditory and visual modalities in a process known as multisensory integration. This allows speech perception to be accurate, even in environments in which one modality or the other is ambiguous in the context of noise. Previous electrophysiological and functional magnetic resonance imaging (fMRI) experiments have implicated the posterior superior temporal sulcus (STS) in auditory-visual integration of both speech and non-speech stimuli. While evidence from prior imaging studies have found increases in STS activity for audiovisual speech compared with unisensory auditory or visual speech, these studies do not provide a clear mechanism as to how the STS communicates with early sensory areas to integrate the two streams of information into a coherent audiovisual percept. Furthermore, it is currently unknown if the activity within the STS is directly correlated with strength of audiovisual perception. In order to better understand the cortical mechanisms that underlie audiovisual speech perception, we first studied the STS activity and connectivity during the perception of speech with auditory and visual components of varying intelligibility. By studying fMRI activity during these noisy audiovisual speech stimuli, we found that STS connectivity with auditory and visual cortical areas mirrored perception; when the information from one modality is unreliable and noisy, the STS interacts less with the cortex processing that modality and more with the cortex processing the reliable information. We next characterized the role of STS activity during a striking audiovisual speech illusion, the McGurk effect, to determine if activity within the STS predicts how strongly a person integrates auditory and visual speech information. Subjects with greater susceptibility to the McGurk effect exhibited stronger fMRI activation of the STS during perception of McGurk syllables, implying a direct correlation between strength of audiovisual integration of speech and activity within an the multisensory STS.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective: There is convincing evidence that phonological, orthographic and semantic processes influence children’s ability to learn to read and spell words. So far only a few studies investigated the influence of implicit learning in literacy skills. Children are sensitive to the statistics of their learning environment. By frequent reading they acquire implicit knowledge about the frequency of letter patterns in written words, and they use this knowledge during reading and spelling. Additionally, semantic connections facilitate to storing of words in memory. Thus, the aim of the intervention study was to implement a word-picture training which is based on statistical and semantic learning. Furthermore, we aimed at examining the training effects in reading and spelling in comparison to an auditory-visual matching training and a working memory training program. Participants and Methods: One hundred and thirty-two children aged between 8 and 11 years participated in training in three weekly session of 12 minutes over 8 weeks, and completed other assessments of reading, spelling, working memory and intelligence before and after training. Results: Results revealed in general that the word-picture training and the auditory-visual matching training led to substantial gains in reading and spelling performance in comparison to the working-memory training. Although both children with and without learning difficulties profited in their reading and spelling after the word-picture training, the training program led to differential effects for the two groups. After the word-picture training on the one hand, children with learning difficulties profited more in spelling as children without learning difficulties, on the other hand, children without learning difficulties benefit more in word comprehension. Conclusions: These findings highlight the need for frequent reading trainings with semantic connections in order to support the acquisition of literacy skills.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Our last study with regularly developed children demonstrated a positive effect of working memory training on cognitive abilities. Building upon these findings, the aim of this multidisciplinary study is to investigate the effects of training of core functions with children who are suffering from different learning disabilities, like AD/HD, developmental dyslexia or specific language impairment. In addition to working memory training (BrainTwister), we apply a perceptual training, which concentrates on auditory-visual matching (Audilex), as well as an implicit concept learning task. We expect differential improvements of mental capacities, specifically of executive functions (working memory, attention, auditory and visual processing), scholastic abilities (language and mathematical skills), as well as of problem solving. With that, we hope to find further directions regarding helpful and individually adapted interventions in educational settings. Interested parties are invited to discuss and comment the design, the research question, and the possibilities in recruiting the subjects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Studies have shown that the discriminability of successive time intervals depends on the presentation order of the standard (St) and the comparison (Co) stimuli. Also, this order affects the point of subjective equality. The first effect is here called the standard-position effect (SPE); the latter is known as the time-order error. In the present study, we investigated how these two effects vary across interval types and standard durations, using Hellström’s sensation-weighting model to describe the results and relate them to stimulus comparison mechanisms. In Experiment 1, four modes of interval presentation were used, factorially combining interval type (filled, empty) and sensory modality (auditory, visual). For each mode, two presentation orders (St–Co, Co–St) and two standard durations (100 ms, 1,000 ms) were used; half of the participants received correctness feedback, and half of them did not. The interstimulus interval was 900 ms. The SPEs were negative (i.e., a smaller difference limen for St–Co than for Co–St), except for the filled-auditory and empty-visual 100-ms standards, for which a positive effect was obtained. In Experiment 2, duration discrimination was investigated for filled auditory intervals with four standards between 100 and 1,000 ms, an interstimulus interval of 900 ms, and no feedback. Standard duration interacted with presentation order, here yielding SPEs that were negative for standards of 100 and 1,000 ms, but positive for 215 and 464 ms. Our findings indicate that the SPE can be positive as well as negative, depending on the interval type and standard duration, reflecting the relative weighting of the stimulus information, as is described by the sensation-weighting model.