1000 resultados para Attosecond pulse


Relevância:

70.00% 70.00%

Publicador:

Resumo:

We have generated attosecond pulse trains in an ensemble of randomly aligned nitrogen molecules. Measurements of the high-order harmonic relative phases and amplitudes allow us to reconstruct the temporal profile of the attosecond pulses. We show that in the considered spectral range, the latter is very similar to the pulse train generated in argon under the same conditions. We discuss the possible influence of the molecular structure in the generation process, and how it can induce subtle differences on the relative phases.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We demonstrate a new attosecond pulse reconstruction modality which uses an algorithm that is derived from ptychography. In contrast to other methods, energy and delay sampling are not correlated, and as a result, the number of electron spectra to record is considerably smaller. Together with the robust algorithm, this leads to a more precise and fast convergence of the reconstruction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

采用脉冲宽度为7 fs,脉冲能量为0.4mJ的超快强激光脉冲与气体盒子中Ar原子作用获得了高次谐波截止区连续谱,并发现当驱动激光稳定在不同的载波包络相位时,高次谐波的谱结构、谱调制深度和连续谱的带宽都有很大区别。在某些载波包络相位时获得了平滑的连续谱,调制深度小于17%,连续带宽达10eV,从而支持时域上获得变换极限500as的单个阿秒脉冲。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

研究了逆流相对论电子与激光脉冲相互作用获得激光同步辐射的频率上移、微分散射截面等特性.发现逆流相对论电子与短脉冲激光相互作用,可以获得阿秒X射线辐射脉冲.短脉冲激光条件下得到的后向散射光的频率上移与长脉冲激光条件下得到的后向散射光的频率上移是完全一致的,同时发现随着入射电子初始能量的增加,散射光的准直性越来越好,后向散射光脉冲的脉宽越来越短.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

采用单电子近似和软核势模型,通过数值求解一维含时薛定谔方程,理论研究了当脉冲分别带有正、负啁啾的情况下所产生的阿秒脉冲,分析了不同脉冲啁啾特性对阿秒脉冲的强度和宽度的影响,研究结果表明,无论是正啁啾还是负啁啾,随着啁啾量的增加,都将使激光脉冲由产生单个阿秒脉冲趋向于产生阿秒脉冲链,正啁啾和负啁啾对于阿秒脉冲宽度的影响是不同的,负啁啾对于阿秒脉冲宽度影响很小,适当的负啁啾有利于缩小阿秒脉冲的宽度;而正啁啾脉冲产生的阿秒脉冲较无啁啾时展宽,且随着啁啾量的增加,其阿秒脉冲宽度迅速增大。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

应用电子汤姆孙散射的经典理论,通过理论分析和计算机模拟,研究了超短超强激光脉冲作用下电子产生的辐射脉冲的性质.计算表明,在这种情况下,电子的辐射通常以阿秒脉冲列的形式出现.讨沦了不同激光场参数(包括激光强度、脉宽、初相位和偏振态)、不同电子初始状态(初始速度和位置)对辐射脉冲的时间和空间特性的影响.通常在相对论光强条件下,激光强度越大,电子辐射越强,脉宽越窄,中心频率越大,并且方向性越好;电子在线偏振激光中产生的辐射效率,比在同样强度下圆偏振激光中产生的效率更高;无论入射光是线偏振光,还是圆偏振光,辐射场

Relevância:

60.00% 60.00%

Publicador:

Resumo:

当红外强激光和极紫外(XUV)阿秒脉冲共同作用于原子分子时,电离出去的电子通常会吸收和辐射激光光子而发生能量扩展.讨论了由于XUV阿秒脉冲的短波长与扩展后的电子波包尺度可相比拟时在高次谐波产生过程中引起的非偶极效应.采用彤作为模型分子,并把分子轴置于激光场的传播方向,通过解二维含时薛定谔方程并比较考虑非偶极效应和采用偶极近似两种方法计算得到的结果,两者相比,前者的谐波强度降低,谐波频率向低级次稍有移动,电子能谱的能带内出现了更多的光电子峰.在相同的光电子能量处,两种方法计算得到的信号强度相差2—5倍.并且

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A technique for enhanced generation of selected high harmonics in a gas medium, in a high ionization limit, is proposed in this paper. An aperiodically corrugated hollow-core fiber is employed to modulate the intensity of the fundamental laser pulse along the direction of propagation, resulting in multiple quasi-phase-matched high harmonic emissions at the cutoff region. Simulated annealing (SA) algorithm is applied for optimizing the aperiodic hollow-core fiber. Our simulation shows that the yield of selected harmonics is increased equally by up to 2 orders of magnitude compared with no modulation and this permits flexible control of the quasi-phase-matched emission of selected harmonics by appropriate corrugation. (c) 2007 Optical Society of America.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We demonstrated that a synthesized laser field consisting of an intense long (45 fs, multi-optical-cycle) laser pulse and a weak short (7 fs, few-optical-cycle) laser pulse can control the electron dynamics and high-order harmonic generation in argon, and generate extreme ultraviolet supercontinuum towards the production of a single strong attosecond pulse. The long pulse offers a large amplitude field, and the short pulse creates a temporally narrow enhancement of the laser field and a gate for the highest energy harmonic emission. This scheme paves the way to generate intense isolated attosecond pulses with strong multi-optical-cycle laser pulses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electron-ion recombination in a laser-induced electron recollision is of fundamental importance as the underlying mechanism responsible for the generation of high harmonic radiation, and hence for the production of attosecond pulse trains in the extreme ultraviolet and soft X-ray spectral regions. By using an ion beam target, remotely prepared to be partially in long-lived excited states, the recombination process has for the first time been directly observed and studied.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We describe an ab initio nonperturbative time-dependent R-matrix theory for ultrafast atomic processes. This theory enables investigations of the interaction of few-femtosecond and -attosecond pulse lasers with complex multielectron atoms and atomic ions. A derivation and analysis of the basic equations are given, which propagate the atomic wave function in the presence of the laser field forward in time in the internal and external R-matrix regions. To verify the accuracy of the approach, we investigate two-photon ionization of Ne irradiated by an intense laser pulse and compare current results with those obtained using the R-matrix Floquet method and an alternative time-dependent method. We also verify the capability of the current approach by applying it to the study of two-dimensional momentum distributions of electrons ejected from Ne due to irradiation by a sequence of 2 as light pulses in the presence of a 780 nm laser field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show that the peak intensity of single attosecond x-ray pulses is enhanced by 1 or 2 orders of magnitude, the pulse duration is greatly compressed, and the optimal propagation distance is shortened by genetic algorithm optimization of the chirp and initial phase of 5 fs laser pulses. However, as the laser intensity increases, more efficient nonadiabatic self-phase matching can lead to a dramatically enhanced harmonic yield, and the efficiency of optimization decreases in the enhancement and compression of the generated attosecond pulses. (c) 2006 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evolution of the intensity of a relativistic laser beam propagating through a dense quantum plasma is investigated, by considering different plasma regimes. A cold quantum fluid plasma and then a thermal quantum description(s) is (are) adopted, in comparison with the classical case of reference. Considering a Gaussian beam cross-section, we investigate both the longitudinal compression and lateral/longitudinal localization of the intensity of a finite-radius electromagnetic pulse. By employing a quantum plasma fluid model in combination with Maxwell's equations, we rely on earlier results on the quantum dielectric response, to model beam-plasma interaction. We present an extensive parametric investigation of the dependence of the longitudinal pulse compression mechanism on the electron density in cold quantum plasmas, and also study the role of the Fermi temperature in thermal quantum plasmas. Our numerical results show pulse localization through a series of successive compression cycles, as the pulse propagates through the plasma. A pulse of 100 fs propagating through cold quantum plasma is compressed to a temporal size of approximate to 1.35 attosecond and a spatial size of approximate to 1.08 10(-3) cm. Incorporating Fermi pressure via a thermal quantum plasma model is shown to enhance localization effects. A 100 fs pulse propagating through quantum plasma with a Fermi temperature of 350 K is compressed to a temporal size of approximate to 0.6 attosecond and a spatial size of approximate to 2.4 10(-3) cm. (c) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The generation of high harmonics from solid-density plasmas promises the production of attosecond (as) pulses orders of magnitude brighter than those from conventional rare gas sources. However, while spatial and spectral emission of surface harmonics has been characterized in detail in many experiments proof that the harmonic emission is indeed phase locked and thus bunched in as-pulses has only been delivered recently (Nomura et al 2009 Nat. Phys. 5 124-8). In this paper, we discuss the experimental setup of our extreme ultraviolet (XUV) autocorrelation (AC) device in detail and show the first two-photon ionization and subsequent AC experiment using solid target harmonics. In addition, we describe a simple analytical model to estimate the chirp between the individual generated harmonics in the sub- and mildly relativistic regime and validate it using particle-in-cell (PIC) simulations. Finally, we propose several methods applicable to surface harmonics to extend the temporal pulse characterization to higher photon energies and for the reconstruction of the spectral phase between the individual harmonics. The experiments described in this paper prove unambiguously that harmonic emission from solid-density plasmas indeed occurs as a train of sub- femtosecond pulses and thus fulfills the most important property for a next-generation as-pulse source of unprecedented brightness.