157 resultados para Atomization


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work describes the development of an analytical procedure for on-line tin determination using thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS). Two tubes were evaluated as atomization cells: a metallic tube (Ni-Cr, principal components composition: 73.95% Ni and 16.05% Cr) and a ceramic tube (99.8% Al2O3). The use of air as the carrier was made by employing a Rheodyne valve to inject the samples, allowing an analytical frequency of 90 h(-1) and avoiding sample dispersion. The carrier flow rate (air), sample volume injected, and acid concentration (HCl) were evaluated for the optimization of the TS-FF-AAS system. The sensitivity for 50 mL of analytical solution with TS-FF-AAS was 2 and 5 times higher (to metallic and ceramic tube, respectively) than using an acetylene-nitrous oxide flame with pneumatic aspiration (requiring a sample volume of approximately 20 times higher.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An approach for the determination of atomization energies based on the extrapolated difference technique in the framework of Knudsen effusion mass spectrometry is proposed. Its essence is the use of thermodynamic data for the determination of the appearance energy of fragment ions of a reference and a special mathematical treatment of the ionization efficiency functions. The advantages of this approach are demonstrated for the cases of incongruently vaporizing lanthanide bromides that suffer from decomposition or disproportionation at high temperatures. The atomization energies for SmBr2 (7.78±0.12 eV), EuBr2 (7.51±0.11 eV), YbBr2 (7.25±0.13 eV), SmBr3 (11.09±0.10 eV), and YbBr3 (10.23±0.09 eV) molecules have been determined for the first time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The gas phase equilibria Ba + LnX = BaX + Ln (Ln = Sm, Eu, Yb; X = Cl, Br, I) were investigated by Knudsen effusion mass spectrometry using a low energy of ionizing electrons to avoid fragmentation processes. The BaX molecules were used as references with well-established bond energies. The atomization enthalpies ΔatH0° of the LnX molecules were determined to be 427 ± 9 (SmCl), 409 ± 9 (EuCl), 366 ± 9 (YbCl), 360 ± 10 (SmBr), 356 ± 13 (EuBr), 316 ± 9 (YbBr), 317 ± 10 (SmI), 293 ± 10 (EuI), and 283 ± 10 (YbI) kJ·mol−1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With advances in drug research, the use of biological therapeutics is becoming a reality. Unfortunately, methods for processing and delivering these fragile macromolecules often limit their therapeutic potential. For this dissertation, we explore the aerosolization of macromolecules by way of electrohydrodynamic atomization (EHDA) and how this method can be used to process and deliver therapeutics. EHDA employs a high voltage to break a column of liquid into drops. It was unknown if or how the residual charge left of the resulting droplets would affect lung cells. An in vitro experiment was conducted to spray aerosolized DNA, by way of EHDA, onto human derived lungs cells to test for immunogenic and toxic effects. The lung cells displayed no immunogenic or toxic response to the DNA or high voltage. Previous researchers have used EHDA to aerosolize proteins with mixed results. This work sets forth a simplified thermodynamic theory and provides recommendations to pharmaceutical companies on how to design more stable protein formulations for aerosol processing or delivery. Finally, a new method of producing liposomes was created. It constructs the liposome one layer at a time. The inside of the liposome is sprayed by EHDA, with the lipid and drug in solution together. As the sprayed monolayer passes through a pool containing a solution of lipid in water, the second part of the bilayer attaches to the inner layer creating a complete bilayer liposome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Not withstanding the high demand of metal powder for automotive and High Tech applications, there are still many unclear aspects of the production process. Only recentlyhas supercomputer performance made possible numerical investigation of such phenomena. This thesis focuses on the modelling aspects of primary and secondary atomization. Initially two-dimensional analysis is carried out to investigate the influence of flow parameters (reservoir pressure and gas temperature principally) and nozzle geometry on final powder yielding. Among the different types, close coupled atomizers have the best performance in terms of cost and narrow size distribution. An isentropic contoured nozzle is introduced to minimize the gas flow losses through shock cells: the results demonstrate that it outperformed the standard converging-diverging slit nozzle. Furthermore the utilization of hot gas gave a promising outcome: the powder size distribution is narrowed and the gas consumption reduced. In the second part of the thesis, the interaction of liquid metal and high speed gas near the feeding tube exit was studied. Both axisymmetric andnon-axisymmetric geometries were simulated using a 3D approach. The filming mechanism was detected only for very small metal flow rates (typically obtained in laboratory scale atomizers). When the melt flow increased, the liquid core overtook the adverse gas flow and entered in the high speed wake directly: in this case the disruption isdriven by sinusoidal surface waves. The process is characterized by fluctuating values of liquid volumes entering the domain that are monitored only as a time average rate: it is far from industrial robustness and capability concept. The non-axisymmetric geometry promoted the splitting of the initial stream into four cores, smaller in diameter and easier to atomize. Finally a new atomization design based on the lesson learned from previous cases simulation is presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The 19 kDa carboxyl-terminal fragment of merozoite surface protein 1 (MSP119) is a major component of the invasion-inhibitory response in individual immunity to malaria. A novel ultrasonic atomization approach for the formulation of biodegradable poly(lactic-co-glycolic acid) (PLGA) microparticles of malaria DNA vaccines encoding MSP119 is presented here. After condensing the plasmid DNA (pDNA) molecules with a cationic polymer polyethylenimine (PEI), a 40 kHz ultrasonic atomization frequency was used to formulate PLGA microparticles at a flow rate of 18 mL h1. High levels of gene expression and moderate cytotoxicity in COS-7 cells were achieved with the condensed pDNA at a nitrogen to phosphate (N/P) ratio of 20, thus demonstrating enhanced cellular uptake and expression of the transgene. The ability of the microparticles to convey pDNA was examined by characterizing the formulated microparticles. The microparticles displayed Z-average hydrodynamic diameters of 1.50-2.10 lm and zeta potentials of 17.8-23.2 mV. The encapsulation efficiencies were between 78 and 83%, and 76 and 85% of the embedded malaria pDNA molecules were released under physiological conditions in vitro. These results indicate that PLGA-mediated microparticles can be employed as potential gene delivery systems to antigen-presenting cells in the prevention of malaria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DNA vaccines or proteins are capable of inducing specific immunity; however, the translation to the clinic has generally been problematic, primarily due to the reduced magnitude of immune response and poor pharmacokinetics. Herein we demonstrate a composite microsphere formulation, composed of mesoporous silica spheres (MPS) and poly(d,l-lactide-co-glycolide) (PLGA), enables the controlled delivery of a prime-boost vaccine via the encapsulation of plasmid DNA (pDNA) and protein in different compartments. Method with modified dual-concentric-feeding needles attached to a 40 kHz ultrasonic atomizer was studied. These needles focus the flow of two different solutions, which passed through the ultrasonic atomizer. The process synthesis parameters, which are important to the scale-up of composite microspheres, were also studied. These parameters include polymer concentration, feed flowrate, and volumetric ratio of polymer and pDNA-PEI/MPS-BSA. This fabrication technique produced composite microspheres with mean D[4,3] ranging from 6 to 34 μm, depending upon the microsphere preparation. The resultant physical morphology of composite microspheres was largely influenced by the volumetric ratio of pDNA-PEI/MPS-BSA to polymer, and this was due to the precipitation of MPS at the surface of the microspheres. The encapsulation efficiencies were predominantly in the range of 93-98% for pDNA and 46-68% for MPS. In the in vitro studies, the pDNA and protein showed different release kinetics in a 40 day time frame. The dual-concentric-feeding in ultrasonic atomization was shown to have excellent reproducibility. It was concluded that this fabrication technique is an effective method to prepare formulations containing a heterologous prime-boost vaccine in a single delivery system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background A novel ultrasonic atomization approach for the formulation of biodegradable poly(lactic-co-glycolic acid) (PLGA) microparticles of a malaria DNA vaccine is presented. A 40 kHz ultrasonic atomization device was used to create the microparticles from a feedstock containing 5 volumes of 0.5% w/v PLGA in acetone and 1 volume of condensed DNA which was fed at a flow rate of 18ml h-1. The plasmid DNA vectors encoding a malaria protein were condensed with a cationic polymer before atomization. Results High levels of gene expression in vitro were observed in COS-7 cells transfected with condensed DNA at a nitrogen to phosphate (N/P) ratio of 10. At this N/P ratio, the condensed DNA exhibited a monodispersed nanoparticle size (Z-average diameter of 60.8 nm) and a highly positive zeta potential of 38.8mV. The microparticle formulations of malaria DNA vaccine were quality assessed and it was shown that themicroparticles displayed high encapsulation efficiencies between 82-96% and a narrow size distribution in the range of 0.8-1.9 μm. In vitro release profile revealed that approximately 82% of the DNA was released within 30 days via a predominantly diffusion controlledmass transfer system. Conclusions This ultrasonic atomization technique showed excellent particle size reproducibility and displayed potential as an industrially viable approach for the formulation of controlled release particles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pure Y2O3 and Y2O3---ZrO2 solid solutions have been prepared by melt atomization and by pyrolysis of nitrate solutions. Extended solubility is readily achieved in both techniques for the entire composition range investigated: melts with 0–30% ZrO2 and precursors with 0–50% ZrO2. However, solidification of under cooled droplets yields almost exclusively single phase powders with the structure of cubic yttria (D53). In contrast, the pyrolysis route leads to a sequence of metastable microstructures beginning with a nanocrystalline disordered fluorite-based (C1) solid solution. Further heating leads to the evolution of much larger (micron size) flake crystals with a {001} texture, concurrent with partial ordering of the oxygen ions to the sites occupied in the D53 structure. The driving force for ordering and the rate of grain growth decrease with increasing ZrO2 addition. Abrupt heating to high temperatures or electron irradiation can induce ordering without substantial grain growth. There is no significant reduction in porosity during the recrystallization, which with the other observations suggests that grain growth is driven by the free energy available for the ordering transformation from fluorite to the yttria structure. This route offers opportunities for single crystal thin film development at relatively low processing temperatures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pure Y2O3 and Y2O3-ZrO2 solid solutions have been prepared by melt atomization and by pyrolysis of nitrate solutions. Extended solubility is readily achieved in both techniques for the entire composition range investigated: melts with 0-30% ZrO2 and precursors with 0-50% ZrO2. However, solidification of under cooled droplets yields almost exclusively single phase powders with the structure of cubic yttria (D5(3)). In contrast, the pyrolysis route leads to a sequence of metastable microstructures beginning with a nanocrystalline disordered fluorite-based (C1) solid solution. Further heating leads to the evolution of much larger (micron size) flake crystals with a {001} texture, concurrent with partial ordering of the oxygen ions to the sites occupied in the D5(3) structure. The driving force for ordering and the rate of grain growth decrease with increasing ZrO2 addition. Abrupt heating to high temperatures or electron irradiation can induce ordering without substantial grain growth. There is no significant reduction in porosity during the recrystallization, which with the other observations suggests that grain growth is driven by the free energy available for the ordering transformation from fluorite to the yttria structure. This route offers opportunities for single crystal thin film development at relatively low processing temperatures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In lean premixed pre-vaporized (LPP) combustion, controlled atomization, dispersion and vaporization of different types of liquid fuel in the premixer are the key factors required to stabilize the combustion process and improve the efficiency. The dispersion and vaporization process for biofuels and conventional fuels sprayed into a crossflow pre-mixer have been simulated and analyzed with respect to vaporization rate, degree of mixedness and homogeneity. Two major biofuels under investigation are Ethanol and Rapeseed Methyl Esters (RME), while conventional fuels are gasoline and jet-A. First, the numerical code is validated by comparing with the experimental data of single n-heptane and decane droplet evaporating under both moderate and high temperature convective air now. Next, the spray simulations were conducted with monodispersed droplets with an initial diameter of 80 mu m injected into a turbulent crossflow of air with a typical velocity of 10 m/s and temperature of around 800K. Vaporization time scales of different fuels are found to be very different. The droplet diameter reduction and surface temperature rise were found to be strongly dependent on the fuel properties. Gasoline droplet exhibited a much faster vaporization due a combination of higher vapor pressure and smaller latent heat of vaporization compared to other fuels. Mono-dispersed spray was adopted with the expectation of achieving more homogeneous fuel droplet size than poly-dispersed spray. However, the diameter histogram in the zone near the pre-mixer exit shows a large range of droplet diameter distributions for all the fuels. In order to improve the vaporization performance, fuels were pre-heated before injection. Results show that the Sauter mean diameter of ethanol improved from 52.8% of the initial injection size to 48.2%, while jet-A improved from 48.4% to 18.6% and RME improved from 63.5% to 31.3%. The diameter histogram showed improved vaporization performance of jet-A. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An experimental study on liquid mass distribution in effervescent sprays using water and air as working fluids is presented in this paper. Optical patternation and techniques of image processing are employed for analyzing the spray. The flow regime inside the effervescent atomizer largely dictates the mass distribution patterns. The patterns are seen to vary from concentrated, poorly atomized liquid lumps to uniformly distributed, fine droplets as the flow regime changes from bubbly flow to annular flow. A large variety of instantaneous spray patterns are observed in bubbly flow regime indicating a highly unsteady atomization process. However, relatively better consistency in spray patterns is observed at higher gas flow rates. Thus, the degree of unsteadiness gradually diminishes as gas flow rate is increased. The axial evolution of the spray in annular mode shows good mixing of liquid and gas across the interface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The high-pressure spray characteristics of biofuels, specifically, Pongamia oil and its blends with diesel are studied for various gas pressures. Two single-hole solenoid injectors with nozzle diameters of 200 and 260 mu m are used along with a high-pressure common-rail direct-injection system to inject fuel into a high-pressure spray visualization chamber. The spray structure is characterized using a high-speed laser-based shadowgraphy technique. The spray structure of Pongamia oil revealed the presence of an intact liquid core at low gas pressure. At high gas pressures, the spray atomization of the Pongamia oil showed marked improvement. The spray tip penetration of Pongamia oil and its blends with diesel is higher compared to that of diesel for all test conditions. The spray cone angle of Pongamia oil and 50% Pongamia oil blend with diesel is lower as compared to that of diesel. Both these observations are attributed to the presence of large droplets carrying higher momentum in oil and blend. The droplet size is measured at an injection pressure of 1000 bar and gas pressure of 30 bar at 25 mm below the nozzle tip using the particle/droplet image.analysis (PDIA) method. The droplet size measurements have shown that the Sauter mean diameter (SMD) in the spray core of Pongamia oil is more than twice that of diesel. The spray tip penetration of the 20% blend of Pongamia with diesel (P20) is similar to that of diesel but the SMD is 50% higher. Based on experimental data, appropriate spray tip penetration correlation is proposed for the vegetable oil fuels such as Pongamia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present results of high pressure spray characterization of Straight Vegetable Oils (SVOs) which are potential diesel fuel substitutes. SVO sprays are visualized at high injection pressures (up to 1600 bar) to study their atomization characteristics. Spray structure studies are reported for the first time for Jatropha and Pongamia vegetable oils, under atmospheric conditions. Jatropha and Pongamia SVO sprays are found to be poorly atomized and intact liquid cores are observed even at an injection pressure of 1600 bar. Non-Newtonian behavior of Jatropha and Pongamia oil is shown to be the reason for observed spray structure. (C) 2012 Elsevier Ltd. All rights reserved.