994 resultados para Astronomical instrumentation
Resumo:
The report documents the development and installation of an instrumented pavement on I-80 in Iowa for the purposes of demonstration and answering current pavement questions. Its two primary objectives include documentation of the installation and verification of existing design procedures through monitoring of the continuous traffic stream reactions in the pavement. Some 120 instruments were installed in a forty foot segment of reconstructed pavement. The instruments included concrete strain gages, weldable strain gages on dowels, LVDT-deflection gages and temperature sensors in the concrete and base material. Five tubes were placed under three joints and two midslabs to measure the relative moisture and density at the interface between the pavement and base with atomic equipment. The instruments were placed ahead of the paving and over 92% of the instruments responded after paving. Planning requirements, problems encountered and costs of installation are presented. The site will use piezoelectric cables in a weigh-in-motion arrangement to trigger the data collection, a microcomputer controlled data acquisition system to analyze multiple sensors simultaneously, and telemetry to monitor the site remotely. Details provide the first time user of instrumentation with valuable information on the planning, problems, costs and coordination required to establish and operate such a site.
Resumo:
Premature deterioration of Portland Cement Concrete (PCC) pavements led to investigations for causes of the concrete failures. Evidence of parallel longitudinal cracks in deteriorating pavements, with crack spacings similar to paver vibrator spacings, made it clear that the vibrators were related to the cause for deterioration. After a number of field trips observing paving operations and measuring vibrator frequencies, it soon became clear that the paver vibrators were, in many cases, not running in compliance with the Iowa DOT specification. The specified frequency was from 5000 to 8000 revolutions per minute (rpm). The pavers visited did not have a monitoring system to give a continuous frequency readout for any of it's vibrators. Occasionally, during a paving operation, frequency readings were taken on some vibrators with a hand held tachometer. However, that degree of monitoring was found to be far from providing the quality of information and control necessary to maintain compliance to the Iowa DOT specification. A paver vibrator monitoring system, which would operate continuously while paving and cover all vibrators, was determined to be essential. The output must be visible to the paver operator and inspector at all times.
Resumo:
As a result of the collapse of a 140 foot high-mast lighting tower in Sioux City, Iowa in November of 2003, a thorough investigation into the behavior and design of these tall, yet relatively flexible structures was undertaken. Extensive work regarding the root cause of this failure was carried out by Robert Dexter of The University of Minnesota. Furthermore, a statewide inspection of all the high-mast towers in Iowa revealed fatigue cracks and loose anchor bolts on other existing structures. The current study was proposed to examine the static and dynamic behavior of a variety of towers in the State of Iowa utilizing field testing, specifically long-term monitoring and load testing. This report presents the results and conclusions from this project. The field work for this project was divided into two phases. Phase 1 of the project was conducted in October 2004 and focused on the dynamic properties of ten different towers in Clear Lake, Ames, and Des Moines, Iowa. Of those ten, two were also instrumented to obtain stress distributions at various details and were included in a 12 month long-term monitoring study. Phase 2 of this investigation was conducted in May of 2005, in Sioux City, Iowa, and focused on determining the static and dynamic behavior of a tower similar to the one that collapsed in November 2003. Identical tests were performed on a similar tower which was retrofitted with a more substantial replacement bottom section in order to assess the effect of the retrofit. A third tower with different details was dynamically load tested to determine its dynamic characteristics, similar to the Phase 1 testing. Based on the dynamic load tests, the modal frequencies of the towers fall within the same range. Also, the damping ratios are significantly lower in the higher modes than the values suggested in the AASHTO and CAN/CSA specifications. The comparatively higher damping ratios in the first mode may be due to aerodynamic damping. These low damping ratios in combination with poor fatigue details contribute to the accumulation of a large number of damage-causing cycles. As predicted, the stresses in the original Sioux City tower are much greater than the stresses in the retrofitted towers at Sioux City. Additionally, it was found that poor installation practices which often lead to loose anchor bolts and out-of-level leveling nuts can cause high localized stresses in the towers, which can accelerate fatigue damage.
Resumo:
The current study was initiated to quantify the stresses induced in critical details on the reinforcing jacket and the tower itself through the use of field instrumentation, load testing, and long-term monitoring. Strain gages were installed on the both the tower and the reinforcing jacket. Additional strain gages were installed on two anchor rods. Tests were conducted with and without the reinforcing jacket installed. Data were collected from all strain gages during static load testing and were used to study the stress distribution of the tower caused by known loads, both with and without the reinforcing jacket. The tower was tested dynamically by first applying a static load, and then quickly releasing the load causing the tower to vibrate freely. Furthermore, the tower was monitored over a period of over 1 year to obtain stress range histograms at the critical details to be used for a fatigue evaluation. Also during the long-term monitoring, triggered time-history data were recorded to study the wind loading phenomena that excite the tower.
Resumo:
Résumé: La qualité de l'implantation d'une prothèse totale du genou est un facteur essentiel déterminant le résultat clinique à long terme. L'alignement postopératoire des membres inférieurs est considéré comme le facteur influençant le plus la survie à long terme d'une arthroplastie du genou. Au vu du haut degré de corrélation entre les complications post-opératoires et les malpositionnements prothétiques, les chirurgiens ont tenté de développer durant ces deux dernières décennies des instruments chirurgicaux améliorant la précision d'implantation. Depuis le début des années 90, de nouvelles instrumentations assistées par ordinateur ont été proposées. Actuellement, en chirurgie prothétique du genou, la plus utilisée de ces techniques est le système de navigation OrthoPilot® qui permet, grâce à une station de navigation et des émetteurs infrarouges, de contrôler en continu pendant l'opération, l'axe mécanique du membre inférieur et de vérifier la précision des coupes osseuses. Le but de cette étude de cohorte appareillée rétrospective est de comparer les résultats clinique et radiologiques de deux collectifs de patients (32 patients dans chaque groupe) comparables (âge, sexe, BMI, degré d'arthrose, recul postopératoire), opérés avec le même type de prothèse (prothèse à glissement tricompartimental postérieurement stabilisée), soit avec le système de navigation Orthopilot®, soit à l'aide de l'instrumentation ancillaire mécanique classique. Les résultats obtenus montrent que la technique chirurgicale supportée par le système de navigation Orthopilot® est fiable et aisément reproductible. Par rapport à l'instrumentation manuelle, l'instrumentation assistée améliore significativement la précision de pose du composant tibial dans le plan frontal. Cependant entre des mains expérimentées, la technique d'alignement mécanique classique, plus simple, reste performante (coût modique, temps opératoire plus court et sans risque de défaillance technique).
Resumo:
Gaia is the most ambitious space astrometry mission currently envisaged and is a technological challenge in all its aspects. We describe a proposal for the payload data handling system of Gaia, as an example of a high-performance, real-time, concurrent, and pipelined data system. This proposal includes the front-end systems for the instrumentation, the data acquisition and management modules, the star data processing modules, and the payload data handling unit. We also review other payload and service module elements and we illustrate a data flux proposal.
Resumo:
The central theme of this thesis is the emancipation and further development of learning activity in higher education in the context of the ongoing digital transformation of our societies. It was developed in response to the highly problematic mainstream approach to digital re-instrumentation of teaching and studying practises in contemporary higher education. The mainstream approach is largely based on centralisation, standardisation, commoditisation, and commercialisation, while re-producing the general patterns of control, responsibility, and dependence that are characteristic for activity systems of schooling. Whereas much of educational research and development focuses on the optimisation and fine-tuning of schooling, the overall inquiry that is underlying this thesis has been carried out from an explicitly critical position and within a framework of action science. It thus conceptualises learning activity in higher education not only as an object of inquiry but also as an object to engage with and to intervene into from a perspective of intentional change. The knowledge-constituting interest of this type of inquiry can be tentatively described as a combination of heuristic-instrumental (guidelines for contextualised action and intervention), practical-phronetic (deliberation of value-rational aspects of means and ends), and developmental-emancipatory (deliberation of issues of power, self-determination, and growth) aspects. Its goal is the production of orientation knowledge for educational practise. The thesis provides an analysis, argumentation, and normative claim on why the development of learning activity should be turned into an object of individual|collective inquiry and intentional change in higher education, and why the current state of affairs in higher education actually impedes such a development. It argues for a decisive shift of attention to the intentional emancipation and further development of learning activity as an important cultural instrument for human (self-)production within the digital transformation. The thesis also attempts an in-depth exploration of what type of methodological rationale can actually be applied to an object of inquiry (developing learning activity) that is at the same time conceptualised as an object of intentional change within the ongoing digital transformation. The result of this retrospective reflection is the formulation of “optimally incomplete” guidelines for educational R&D practise that shares the practicalphronetic (value related) and developmental-emancipatory (power related) orientations that had been driving the overall inquiry. In addition, the thesis formulates the instrumental-heuristic knowledge claim that the conceptual instruments that were adapted and validated in the context of a series of intervention studies provide means to effectively intervene into existing practise in higher education to support the necessary development of (increasingly emancipated) networked learning activity. It suggests that digital networked instruments (tools and services) generally should be considered and treated as transient elements within critical systemic intervention research in higher education. It further argues for the predominant use of loosely-coupled, digital networked instruments that allow for individual|collective ownership, control, (co-)production, and re-use in other contexts and for other purposes. Since the range of digital instrumentation options is continuously expanding and currently shows no signs of an imminent slow-down or consolidation, individual and collective exploration and experimentation of this realm needs to be systematically incorporated into higher education practise.
Resumo:
Measurement is a tool for researching. Therefore, it is important that the measuring process is carried out correctly, without distorting the signal or the measured event. Researches of thermoelectric phenomena have been focused more on transverse thermoelectric phenomena during recent decades. Transverse Seebeck effect enables to produce thinner and faster heat flux sensor than before. Studies about transverse Seebeck effect have so far focused on materials, so in this Master’s Thesis instrumentation of transverse Seebeck effect based heat flux sensor is studied, This Master’s Thesis examines an equivalent circuit of transverse Seebeck effect heat flux sensors, their connectivity to electronics and choosing and design a right type amplifier. The research is carried out with a case study which is Gradient Heat Flux Sensors and an electrical motor. In this work, a general equivalent circuit was presented for the transverse Seebeck effect-based heat flux sensor. An amplifier was designed for the sensor of the case study, and the solution was produced for the measurement of the local heat flux of the electric motor to improve the electromagnetic compatibility.
Resumo:
Statistical analyses of measurements that can be described by statistical models are of essence in astronomy and in scientific inquiry in general. The sensitivity of such analyses, modelling approaches, and the consequent predictions, is sometimes highly dependent on the exact techniques applied, and improvements therein can result in significantly better understanding of the observed system of interest. Particularly, optimising the sensitivity of statistical techniques in detecting the faint signatures of low-mass planets orbiting the nearby stars is, together with improvements in instrumentation, essential in estimating the properties of the population of such planets, and in the race to detect Earth-analogs, i.e. planets that could support liquid water and, perhaps, life on their surfaces. We review the developments in Bayesian statistical techniques applicable to detections planets orbiting nearby stars and astronomical data analysis problems in general. We also discuss these techniques and demonstrate their usefulness by using various examples and detailed descriptions of the respective mathematics involved. We demonstrate the practical aspects of Bayesian statistical techniques by describing several algorithms and numerical techniques, as well as theoretical constructions, in the estimation of model parameters and in hypothesis testing. We also apply these algorithms to Doppler measurements of nearby stars to show how they can be used in practice to obtain as much information from the noisy data as possible. Bayesian statistical techniques are powerful tools in analysing and interpreting noisy data and should be preferred in practice whenever computational limitations are not too restrictive.
Resumo:
In the present paper we discuss the development of "wave-front", an instrument for determining the lower and higher optical aberrations of the human eye. We also discuss the advantages that such instrumentation and techniques might bring to the ophthalmology professional of the 21st century. By shining a small light spot on the retina of subjects and observing the light that is reflected back from within the eye, we are able to quantitatively determine the amount of lower order aberrations (astigmatism, myopia, hyperopia) and higher order aberrations (coma, spherical aberration, etc.). We have measured artificial eyes with calibrated ametropia ranging from +5 to -5 D, with and without 2 D astigmatism with axis at 45º and 90º. We used a device known as the Hartmann-Shack (HS) sensor, originally developed for measuring the optical aberrations of optical instruments and general refracting surfaces in astronomical telescopes. The HS sensor sends information to a computer software for decomposition of wave-front aberrations into a set of Zernike polynomials. These polynomials have special mathematical properties and are more suitable in this case than the traditional Seidel polynomials. We have demonstrated that this technique is more precise than conventional autorefraction, with a root mean square error (RMSE) of less than 0.1 µm for a 4-mm diameter pupil. In terms of dioptric power this represents an RMSE error of less than 0.04 D and 5º for the axis. This precision is sufficient for customized corneal ablations, among other applications.
Resumo:
Fermi patches in quasi-two dimensional charge density waves (CDW) have not described the connection to superconductivity (SC) according to theory adequately at this point in time. The connection between CDW and SC in the quasi-two dimensional material CuxTiSe2 is an interesting one which might reveal mechanisms in unconventional superconductors. A previous Brock graduate student grew crystals of CuxTiSe2. The precise doping of the samples was not known. In order to determine the doping parameter x in CuxTiSe2, a sensitive resistivity measurement system was necessary. A new resistivity measurement system was designed and implemented utilizing an Infrared Labs HDL-10 He3 cryostat. By comparing with data from the literature, doping of two samples was investigated using the new measurement system and a Quantum Design Magnetic Property Measurement System (MPMS). Methods for determining the doping revealed that the old resistivity system would not be able to determine the CDW transition temperature of highly doped samples or doping for elongated samples due to electronic noise. Doping in one sample was found to be between x=0.06 and x=0.065. Values of doping in the second sample had a discrepancy but could be explained by incorrect sample orientation.
Resumo:
UANL