969 resultados para Astigmatic axis
Resumo:
Background: To evaluate outcomes after optimized laser in situ keratomileusis (LASIK) for astigmatism correction with flap created by a mechanical microkeratome or a femtosecond laser. Patients and Methods: In this retrospective study, a total of 102 eyes of 71 consecutive patients were enrolled undergoing optimized LASIK treatments using the Allegretto laser system (WaveLight Laser Technologie AG, Erlangen, Germany). A mechanical microkeratome for flap creation was used (One Use, Moria®) in 46 eyes (31 patients, spherical equivalent [SE] -4.44 D ± 2.4) and a femtosecond laser was used (LDV, Ziemer®) in 56 eyes (40 patients, spherical equivalent [SE] -3.07 D ± 3.3). The two groups were matched for inclusion criteria and were operated under similar conditions by the same surgeon. Results: Overall, the preoperative spherical equivalent was -9.5 diopters (D) to +3.37 D; the preoperative manifest astigmatism was between -1.5 D and -3.5 D. At 6 months postoperatively, the mean postoperative uncorrected distance visual acuity (UDVA) was 0.93 ± 0.17 (range 0.4 to 1.2) in the Moria group and 1.0 ± 0.21 (range 0.6 to 1.6) in the Femto group, which was statistically significant (p = 0.003). Comparing the cylinder power there was a statistical difference between the two groups (p = 0.0015). Conclusions: This study shows that the method of flap creation has a significant impact on postoperative astigmatism with a significantly better postoperative UDVA in the Femto group. These findings suggest that the femtosecond laser provides a better platform for LASIK treatment of astigmatism than the commonly used microkeratome.
Resumo:
Neuroblastoma (NB) is a typical childhood and heterogeneous neoplasm for which efficient targeted therapies for high-risk tumors are not yet identified. The chemokine CXCL12, and its receptors CXCR4 and CXCR7 have been involved in tumor progression and dissemination. While CXCR4 expression is associated to undifferentiated tumors and poor prognosis, the role of CXCR7, the recently identified second CXCL12 receptor, has not yet been elucidated in NB. In this report, CXCR7 and CXCL12 expressions were evaluated using a tissue micro-array including 156 primary and 56 metastatic NB tissues. CXCL12 was found to be highly associated to NB vascular and stromal structures. In contrast to CXCR4, CXCR7 expression was low in undifferentiated tumors, while its expression was stronger in matured tissues and specifically associated to differentiated neural tumor cells. As determined by RT-PCR, CXCR7 expression was mainly detected in N-and S-type NB cell lines, and was slightly induced upon NB cell differentiation in vitro. The relative roles of the two CXCL12 receptors were further assessed by overexpressing CXCR7 or CXCR4 receptor alone, or in combination, in the IGR-NB8 and the SH-SY5Y NB cell lines. In vitro functional analyses indicated that, in response to their common ligand, both receptors induced activation of ERK1/2 cascade, but not Akt pathway. CXCR7 strongly reduced in vitro growth, in contrast to CXCR4, and impaired CXCR4/CXCL12-mediated chemotaxis. Subcutaneous implantation of CXCR7-expressing NB cells showed that CXCR7 also significantly reduced in vivo growth. Moreover, CXCR7 affected CXCR4-mediated orthotopic growth in a CXCL12-producing environment. In such model, CXCR7, in association with CXCR4, did not induce NB cell metastatic dissemination. In conclusion, the CXCR7 and CXCR4 receptors revealed specific expression patterns and distinct functional roles in NB. Our data suggest that CXCR7 elicits anti-tumorigenic functions, and may act as a regulator of CXCR4/CXCL12-mediated signaling in NB.
Resumo:
Development of cardiac hypertrophy and progression to heart failure entails profound changes in myocardial metabolism, characterized by a switch from fatty acid utilization to glycolysis and lipid accumulation. We report that hypoxia-inducible factor (HIF)1alpha and PPARgamma, key mediators of glycolysis and lipid anabolism, respectively, are jointly upregulated in hypertrophic cardiomyopathy and cooperate to mediate key changes in cardiac metabolism. In response to pathologic stress, HIF1alpha activates glycolytic genes and PPARgamma, whose product, in turn, activates fatty acid uptake and glycerolipid biosynthesis genes. These changes result in increased glycolytic flux and glucose-to-lipid conversion via the glycerol-3-phosphate pathway, apoptosis, and contractile dysfunction. Ventricular deletion of Hif1alpha in mice prevents hypertrophy-induced PPARgamma activation, the consequent metabolic reprogramming, and contractile dysfunction. We propose a model in which activation of the HIF1alpha-PPARgamma axis by pathologic stress underlies key changes in cell metabolism that are characteristic of and contribute to common forms of heart disease.
Resumo:
LRH and its agonists have been shown to exert both stimulatory and inhibitory effects on testicular function. In the present study, the dose and length of treatment were tested to determine the appearance of the stimulatory and inhibitory effects of LRH agonist on testicular axis including the three levels. Two doses of an agonist of LRH, 40 and 100 ng/100 g body weight (buserelin, 'agonist'), were administered daily for 1 to 15 days to adult male rats. Control rats received the vehicle only. On day 1, 2, 4, 8 and 15 of treatment, the pituitary, testicular and peripheral levels (weight of accessory sex organs and androgen receptors in ventral prostate) were tested 6 h after the last injection. For the 15 days of treatment with both doses, a stimulatory effect of the 'agonist' was observed on LH and FSH release. A short exposure (1-2 days) to the low dose of the 'agonist' had a stimulatory effect on the density of LH/hCG testicular receptors (326 +/- 49 vs control 185 +/- 21 fmol/mg protein, mean +/- SEM), on the weights of seminal vesicles and ventral prostate and exposure to both doses led to high plasma testosterone levels (13.8 +/- 0.5 and 13.7 +/- 0.7 ng/ml, respectively, vs control 2.6 +/- 0.3 ng/ml), and to an increased density of nuclear androgen receptors in the ventral prostate (142 +/- 9 and 144 +/- 15 fmol/mg protein respectively vs control 97 +/- 12 fmol/mg protein).(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
We consider noncentered vortices and their arrays in a cylindrically trapped Bose-Einstein condensate at zero temperature. We study the kinetic energy and the angular momentum per particle in the Thomas-Fermi regime and their dependence on the distance of the vortices from the center of the trap. Using a perturbative approach with respect to the velocity field of the vortices, we calculate, to first order, the frequency shift of the collective low-lying excitations due to the presence of an off-center vortex or a vortex array, and compare these results with predictions that would be obtained by the application of a simple sum-rule approach, previously found to be very successful for centered vortices. It turns out that the simple sum-rule approach fails for off-centered vortices.
Resumo:
The formation of a hollow cellular sphere is often one of the first steps of multicellular embryonic development. In the case of Hydra, the sphere breaks its initial symmetry to form a foot-head axis. During this process a gene, ks1, is increasingly expressed in localized cell domains whose size distribution becomes scale-free at the axis-locking moment. We show that a physical model based solely on the production and exchange of ks1-promoting factors among neighboring cells robustly reproduces the scaling behavior as well as the experimentally observed spontaneous and temperature-directed symmetry breaking.
Resumo:
We propose a method to obtain a single centered correlation with use of a joint transform correlator. We analyze the required setup to carry out the whole process optically, and we also present experimental results.
Resumo:
A new spinning axis representation is introduced. It allows us to calculate the evolution operator of a system with slowly varying time dependent Hamiltonian with the desired degree of approximation in the parameter used for describing its dynamical evolution. The procedure is compared with a previously existing one and applied to a simple example.
Resumo:
Background: To evaluate outcomes after optimized laser in situ keratomileusis (LASIK) for astigmatism correction with flap created by a mechanical microkeratome or a femtosecond laser. Patients and Methods: In this retrospective study, a total of 102 eyes of 71 consecutive patients were enrolled undergoing optimized LASIK treatments using the Allegretto laser system (WaveLight Laser Technologie AG, Erlangen, Germany). A mechanical microkeratome for flap creation was used (One Use, Moria®) in 46 eyes (31 patients, spherical equivalent [SE] -4.44 D ± 2.4) and a femtosecond laser was used (LDV, Ziemer®) in 56 eyes (40 patients, spherical equivalent [SE] -3.07 D ± 3.3). The two groups were matched for inclusion criteria and were operated under similar conditions by the same surgeon. Results: Overall, the preoperative spherical equivalent was -9.5 diopters (D) to +3.37 D; the preoperative manifest astigmatism was between -1.5 D and -3.5 D. At 6 months postoperatively, the mean postoperative uncorrected distance visual acuity (UDVA) was 0.93 ± 0.17 (range 0.4 to 1.2) in the Moria group and 1.0 ± 0.21 (range 0.6 to 1.6) in the Femto group, which was statistically significant (p = 0.003). Comparing the cylinder power there was a statistical difference between the two groups (p = 0.0015). Conclusions: This study shows that the method of flap creation has a significant impact on postoperative astigmatism with a significantly better postoperative UDVA in the Femto group. These findings suggest that the femtosecond laser provides a better platform for LASIK treatment of astigmatism than the commonly used microkeratome.
Resumo:
Our aim was to assess the clinical outcome of patients who were subjected to long-axis sacroplasty for the treatment of sacral insufficiency fractures. Nineteen patients with unilateral (n = 3) or bilateral (n = 16) sacral fractures were involved. Under local anaesthesia, each patient was subjected to CT-guided sacroplasty using the long-axis approach through a single entry point. An average of 6 ml of polymethylmethacrylate (PMMA) was delivered along the path of each sacral fracture. For each individual patient, the Visual Analogue pain Scale (VAS) before sacroplasty and at 1, 4, 24 and 48 weeks after the procedure was obtained. Furthermore, the use of analgesics (narcotic/non-narcotic) along with the evolution of post-interventional patient mobility before and after sacroplasty was also recorded. The mean pre-procedure VAS was 8 +/- 1.9 (range, 2 to 10). This rapidly and significantly (P < 0.001) declined in the first week after the procedure (mean 4 +/- 1.4; range, 1 to 7) followed by a gradual and significant (P < 0.001) decrease along the rest of the follow-up period at 4 weeks (mean 3 +/- 1.1; range, 1 to 5), 24 weeks (mean 2.2 +/- 1.1; range, 1 to 5) and 48 weeks (mean 1.6 +/- 1.1; range, 1 to 5). Eleven (58%) patients were under narcotic analgesia before sacroplasty, whereas 8 (42%) patients were using non-narcotics. Corresponding values after the procedure were 2/19 (10%; narcotic, one of them was on reserve) and 10/19 (53%; non-narcotic). The remaining 7 (37%) patients did not address post-procedure analgesic use. The evolution of post-interventional mobility was favourable in the study group as they revealed a significant improvement in their mobility point scale (P < 0.001). Long-axis percutaneous sacroplasty is a suitable, minimally invasive treatment option for patients who present with sacral insufficiency fractures. More studies with larger patient numbers are needed to explore any unrecognised limitations of this therapeutic approach.
Resumo:
An example of the relationship that exist between the preferred crystaliografic orientation of quartz grains and the attitude of the mylonite foliation of quartz-feldspar mylonites is described. These rocks are the result of the inhomogeneous deformation under low-grade metamorphic conditions of a late Hercynian granodiorite, intruded into the gneisses of the slopes of the Canig massif (Eastern Pyrenees). The Costabona mylonites have a quartz c-axis fabric in pseudo-twogirdles symmetrical with respect to the mylonite foliation and perpendicular to the shearband systems which produce an extensional crenulation of the mylonite foliation.
Resumo:
The Nrf2 transcription factor controls the expression of genes involved in the antioxidant defense system. Here, we identified Nrf2 as a novel regulator of desmosomes in the epidermis through the regulation of microRNAs. On Nrf2 activation, expression of miR-29a and miR-29b increases in cultured human keratinocytes and in mouse epidermis. Chromatin immunoprecipitation identified the Mir29ab1 and Mir29b2c genes as direct Nrf2 targets in keratinocytes. While binding of Nrf2 to the Mir29ab1 gene activates expression of miR-29a and -b, the Mir29b2c gene is silenced by DNA methylation. We identified desmocollin-2 (Dsc2) as a major target of Nrf2-induced miR-29s. This is functionally important, since Nrf2 activation in keratinocytes of transgenic mice causes structural alterations of epidermal desmosomes. Furthermore, the overexpression of miR-29a/b or knockdown of Dsc2 impairs the formation of hyper-adhesive desmosomes in keratinocytes, whereas Dsc2 overexpression has the opposite effect. These results demonstrate that a novel Nrf2-miR-29-Dsc2 axis controls desmosome function and cutaneous homeostasis.
Resumo:
PURPOSE: Local breast cancer relapse after breast-saving surgery and radiotherapy is associated with increased risk of distant metastasis formation. The mechanisms involved remain largely elusive. We used the well-characterized 4T1 syngeneic, orthotopic breast cancer model to identify novel mechanisms of postradiation metastasis. EXPERIMENTAL DESIGN: 4T1 cells were injected in 20 Gy preirradiated mammary tissue to mimic postradiation relapses, or in nonirradiated mammary tissue, as control, of immunocompetent BALB/c mice. Molecular, biochemical, cellular, histologic analyses, adoptive cell transfer, genetic, and pharmacologic interventions were carried out. RESULTS: Tumors growing in preirradiated mammary tissue had reduced angiogenesis and were more hypoxic, invasive, and metastatic to lung and lymph nodes compared with control tumors. Increased metastasis involved the mobilization of CD11b(+)c-Kit(+)Ly6G(high)Ly6C(low)(Gr1(+)) myeloid cells through the HIF1-dependent expression of Kit ligand (KitL) by hypoxic tumor cells. KitL-mobilized myeloid cells homed to primary tumors and premetastatic lungs, to give rise to CD11b(+)c-Kit(-) cells. Pharmacologic inhibition of HIF1, silencing of KitL expression in tumor cells, and inhibition of c-Kit with an anti-c-Kit-blocking antibody or with a tyrosine kinase inhibitor prevented the mobilization of CD11b(+)c-Kit(+) cells and attenuated metastasis. C-Kit inhibition was also effective in reducing mobilization of CD11b(+)c-Kit(+) cells and inhibiting lung metastasis after irradiation of established tumors. CONCLUSIONS: Our work defines KitL/c-Kit as a previously unidentified axis critically involved in promoting metastasis of 4T1 tumors growing in preirradiated mammary tissue. Pharmacologic inhibition of this axis represents a potential therapeutic strategy to prevent metastasis in breast cancer patients with local relapses after radiotherapy. Clin Cancer Res; 18(16); 4365-74. ©2012 AACR.
Resumo:
A large body of data gathered over the last decades has delineated the neuronal pathways that link the central nervous system with the autonomic innervation of the endocrine pancreas, which controls alpha- and beta-cell secretion activity and mass. These are important regulatory functions that are certainly keys for preserving the capacity of the endocrine pancreas to control glucose homeostasis over a lifetime. Identifying the cells involved in controlling the autonomic innervation of the endocrine pancreas, in response to nutrient, hormonal and environmental cues and how these cues are detected to activate neuronal activity are important goals of current research. Elucidation of these questions may possibly lead to new means for preserving or restoring defects in insulin and glucagon secretion associated with type 2 diabetes.
Resumo:
In this communication we introduce a low or reduced coherence interferometry technique that can be used to retrieve surface topology on samples with high roughness. Moreover, we will show that the approach enables surface topology measurement also at the interface of so-called turbid media, where multiple scattering inside tissues can be a major issue, preventing accurate measurements.