886 resultados para Association Studies


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background The generalized odds ratio (GOR) was recently suggested as a genetic model-free measure for association studies. However, its properties were not extensively investigated. We used Monte Carlo simulations to investigate type-I error rates, power and bias in both effect size and between-study variance estimates of meta-analyses using the GOR as a summary effect, and compared these results to those obtained by usual approaches of model specification. We further applied the GOR in a real meta-analysis of three genome-wide association studies in Alzheimer's disease. Findings For bi-allelic polymorphisms, the GOR performs virtually identical to a standard multiplicative model of analysis (e.g. per-allele odds ratio) for variants acting multiplicatively, but augments slightly the power to detect variants with a dominant mode of action, while reducing the probability to detect recessive variants. Although there were differences among the GOR and usual approaches in terms of bias and type-I error rates, both simulation- and real data-based results provided little indication that these differences will be substantial in practice for meta-analyses involving bi-allelic polymorphisms. However, the use of the GOR may be slightly more powerful for the synthesis of data from tri-allelic variants, particularly when susceptibility alleles are less common in the populations (≤10%). This gain in power may depend on knowledge of the direction of the effects. Conclusions For the synthesis of data from bi-allelic variants, the GOR may be regarded as a multiplicative-like model of analysis. The use of the GOR may be slightly more powerful in the tri-allelic case, particularly when susceptibility alleles are less common in the populations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose robust and e±cient tests and estimators for gene-environment/gene-drug interactions in family-based association studies. The methodology is designed for studies in which haplotypes, quantitative pheno- types and complex exposure/treatment variables are analyzed. Using causal inference methodology, we derive family-based association tests and estimators for the genetic main effects and the interactions. The tests and estimators are robust against population admixture and strati¯cation without requiring adjustment for confounding variables. We illustrate the practical relevance of our approach by an application to a COPD study. The data analysis suggests a gene-environment interaction between a SNP in the Serpine gene and smok- ing status/pack years of smoking that reduces the FEV1 volume by about 0.02 liter per pack year of smoking. Simulation studies show that the pro- posed methodology is su±ciently powered for realistic sample sizes and that it provides valid tests and effect size estimators in the presence of admixture and stratification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation has three separate parts: the first part deals with the general pedigree association testing incorporating continuous covariates; the second part deals with the association tests under population stratification using the conditional likelihood tests; the third part deals with the genome-wide association studies based on the real rheumatoid arthritis (RA) disease data sets from Genetic Analysis Workshop 16 (GAW16) problem 1. Many statistical tests are developed to test the linkage and association using either case-control status or phenotype covariates for family data structure, separately. Those univariate analyses might not use all the information coming from the family members in practical studies. On the other hand, the human complex disease do not have a clear inheritance pattern, there might exist the gene interactions or act independently. In part I, the new proposed approach MPDT is focused on how to use both the case control information as well as the phenotype covariates. This approach can be applied to detect multiple marker effects. Based on the two existing popular statistics in family studies for case-control and quantitative traits respectively, the new approach could be used in the simple family structure data set as well as general pedigree structure. The combined statistics are calculated using the two statistics; A permutation procedure is applied for assessing the p-value with adjustment from the Bonferroni for the multiple markers. We use simulation studies to evaluate the type I error rates and the powers of the proposed approach. Our results show that the combined test using both case-control information and phenotype covariates not only has the correct type I error rates but also is more powerful than the other existing methods. For multiple marker interactions, our proposed method is also very powerful. Selective genotyping is an economical strategy in detecting and mapping quantitative trait loci in the genetic dissection of complex disease. When the samples arise from different ethnic groups or an admixture population, all the existing selective genotyping methods may result in spurious association due to different ancestry distributions. The problem can be more serious when the sample size is large, a general requirement to obtain sufficient power to detect modest genetic effects for most complex traits. In part II, I describe a useful strategy in selective genotyping while population stratification is present. Our procedure used a principal component based approach to eliminate any effect of population stratification. The paper evaluates the performance of our procedure using both simulated data from an early study data sets and also the HapMap data sets in a variety of population admixture models generated from empirical data. There are one binary trait and two continuous traits in the rheumatoid arthritis dataset of Problem 1 in the Genetic Analysis Workshop 16 (GAW16): RA status, AntiCCP and IgM. To allow multiple traits, we suggest a set of SNP-level F statistics by the concept of multiple-correlation to measure the genetic association between multiple trait values and SNP-specific genotypic scores and obtain their null distributions. Hereby, we perform 6 genome-wide association analyses using the novel one- and two-stage approaches which are based on single, double and triple traits. Incorporating all these 6 analyses, we successfully validate the SNPs which have been identified to be responsible for rheumatoid arthritis in the literature and detect more disease susceptibility SNPs for follow-up studies in the future. Except for chromosome 13 and 18, each of the others is found to harbour susceptible genetic regions for rheumatoid arthritis or related diseases, i.e., lupus erythematosus. This topic is discussed in part III.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Complex human diseases are a major challenge for biological research. The goal of my research is to develop effective methods for biostatistics in order to create more opportunities for the prevention and cure of human diseases. This dissertation proposes statistical technologies that have the ability of being adapted to sequencing data in family-based designs, and that account for joint effects as well as gene-gene and gene-environment interactions in the GWA studies. The framework includes statistical methods for rare and common variant association studies. Although next-generation DNA sequencing technologies have made rare variant association studies feasible, the development of powerful statistical methods for rare variant association studies is still underway. Chapter 2 demonstrates two adaptive weighting methods for rare variant association studies based on family data for quantitative traits. The results show that both proposed methods are robust to population stratification, robust to the direction and magnitude of the effects of causal variants, and more powerful than the methods using weights suggested by Madsen and Browning [2009]. In Chapter 3, I extended the previously proposed test for Testing the effect of an Optimally Weighted combination of variants (TOW) [Sha et al., 2012] for unrelated individuals to TOW &ndash F, TOW for Family &ndash based design. Simulation results show that TOW &ndash F can control for population stratification in wide range of population structures including spatially structured populations, is robust to the directions of effect of causal variants, and is relatively robust to percentage of neutral variants. In GWA studies, this dissertation consists of a two &ndash locus joint effect analysis and a two-stage approach accounting for gene &ndash gene and gene &ndash environment interaction. Chapter 4 proposes a novel two &ndash stage approach, which is promising to identify joint effects, especially for monotonic models. The proposed approach outperforms a single &ndash marker method and a regular two &ndash stage analysis based on the two &ndash locus genotypic test. In Chapter 5, I proposed a gene &ndash based two &ndash stage approach to identify gene &ndash gene and gene &ndash environment interactions in GWA studies which can include rare variants. The two &ndash stage approach is applied to the GAW 17 dataset to identify the interaction between KDR gene and smoking status.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As the development of genotyping and next-generation sequencing technologies, multi-marker testing in genome-wide association study and rare variant association study became active research areas in statistical genetics. This dissertation contains three methodologies for association study by exploring different genetic data features and demonstrates how to use those methods to test genetic association hypothesis. The methods can be categorized into in three scenarios: 1) multi-marker testing for strong Linkage Disequilibrium regions, 2) multi-marker testing for family-based association studies, 3) multi-marker testing for rare variant association study. I also discussed the advantage of using these methods and demonstrated its power by simulation studies and applications to real genetic data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information in the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association studies (STREGA) initiative builds on the STrengthening the Reporting of OBservational Studies in Epidemiology (STROBE) Statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modelling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data and the volume of data issues that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed, but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct or analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information in the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association studies (STREGA) initiative builds on the STrengthening the Reporting of OBservational Studies in Epidemiology (STROBE) Statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modelling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data, and the volume of data issues that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct, or analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information in the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence, the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association (STREGA) studies initiative builds on the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modeling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data, and the volume of data issues that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed, but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct, or analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information in the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association studies (STREGA) initiative builds on the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modelling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data, and the volume of data issues that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct, or analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information into the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association studies (STREGA) initiative builds on the STrengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modeling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data, and issues of data volume that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct, or analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information in the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association studies (STREGA) initiative builds on the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modeling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data, and the volume of data issues that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct, or analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information in the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association studies (STREGA) initiative builds on the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modeling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data, and the volume of data issues that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct, or analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A wealth of genetic associations for cardiovascular and metabolic phenotypes in humans has been accumulating over the last decade, in particular a large number of loci derived from recent genome wide association studies (GWAS). True complex disease-associated loci often exert modest effects, so their delineation currently requires integration of diverse phenotypic data from large studies to ensure robust meta-analyses. We have designed a gene-centric 50 K single nucleotide polymorphism (SNP) array to assess potentially relevant loci across a range of cardiovascular, metabolic and inflammatory syndromes. The array utilizes a "cosmopolitan" tagging approach to capture the genetic diversity across approximately 2,000 loci in populations represented in the HapMap and SeattleSNPs projects. The array content is informed by GWAS of vascular and inflammatory disease, expression quantitative trait loci implicated in atherosclerosis, pathway based approaches and comprehensive literature searching. The custom flexibility of the array platform facilitated interrogation of loci at differing stringencies, according to a gene prioritization strategy that allows saturation of high priority loci with a greater density of markers than the existing GWAS tools, particularly in African HapMap samples. We also demonstrate that the IBC array can be used to complement GWAS, increasing coverage in high priority CVD-related loci across all major HapMap populations. DNA from over 200,000 extensively phenotyped individuals will be genotyped with this array with a significant portion of the generated data being released into the academic domain facilitating in silico replication attempts, analyses of rare variants and cross-cohort meta-analyses in diverse populations. These datasets will also facilitate more robust secondary analyses, such as explorations with alternative genetic models, epistasis and gene-environment interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To identify novel quantitative trait loci (QTL) within horses, we performed genome-wide association studies (GWAS) based on sequence-level genotypes for conformation and performance traits in the Franches-Montagnes (FM) horse breed. Sequence-level genotypes of FM horses were derived by re-sequencing 30 key founders and imputing 50K data of genotyped horses. In total, we included 1077 FM horses genotyped for ~4 million SNPs and their respective de-regressed breeding values of the traits in the analysis. Based on this dataset, we identified a total of 14 QTL associated with 18 conformation traits and one performance trait. Therefore, our results suggest that the application of sequence-derived genotypes increases the power to identify novel QTL which were not identified previously based on 50K SNP chip data.