979 resultados para Assignment Problem


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Purpose – This paper sets out to study a production-planning problem for printed circuit board (PCB) assembly. A PCB assembly company may have a number of assembly lines for production of several product types in large volume. Design/methodology/approach – Pure integer linear programming models are formulated for assigning the product types to assembly lines, which is the line assignment problem, with the objective of minimizing the total production cost. In this approach, unrealistic assignment, which was suffered by previous researchers, is avoided by incorporating several constraints into the model. In this paper, a genetic algorithm is developed to solve the line assignment problem. Findings – The procedure of the genetic algorithm to the problem and a numerical example for illustrating the models are provided. It is also proved that the algorithm is effective and efficient in dealing with the problem. Originality/value – This paper studies the line assignment problem arising in a PCB manufacturing company in which the production volume is high.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The purpose of this report is to present the Crossdock Door Assignment Problem, which involves assigning destinations to outbound dock doors of Crossdock centres such that travel distance by material handling equipment is minimized. We propose a two fold solution; simulation and optimization of the simulation model - simulation optimization. The novel aspect of our solution approach is that we intend to use simulation to derive a more realistic objective function and use Memetic algorithms to find an optimal solution. The main advantage of using Memetic algorithms is that it combines a local search with Genetic Algorithms. The Crossdock Door Assignment Problem is a new domain application to Memetic Algorithms and it is yet unknown how it will perform.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The purpose of this report is to present the Crossdock Door Assignment Problem, which involves assigning destinations to outbound dock doors of Crossdock centres such that travel distance by material handling equipment is minimized. We propose a two fold solution; simulation and optimization of the simulation model - simulation optimization. The novel aspect of our solution approach is that we intend to use simulation to derive a more realistic objective function and use Memetic algorithms to find an optimal solution. The main advantage of using Memetic algorithms is that it combines a local search with Genetic Algorithms. The Crossdock Door Assignment Problem is a new domain application to Memetic Algorithms and it is yet unknown how it will perform.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação de mestrado em Engenharia Industrial

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A statistical methodology is developed by which realised outcomes can be used to identify, for calendar years between 1974 and 2012, when policy makers in ‘advanced’ economies have successfully pursued single objectives of different kinds, or multiple objectives. A simple criterion is then used to distinguish between multiple objectives pure and simple and multiple objectives subject to a price stability constraint. The overall and individual country results which this methodology produces seem broadly plausible. Unconditional and conditional analyses of the inflation and growth associated with different types of objectives reveal that multiple objectives subject to a price stability constraint are associated with roughly as good economic performance as the single objective of inflation. A proposal is then made as to how the remit of an inflation-targeting central bank could be adjusted to allow it to pursue other objectives in extremis without losing the credibility effects associated with inflation targeting.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Combinatorial optimization involves finding an optimal solution in a finite set of options; many everyday life problems are of this kind. However, the number of options grows exponentially with the size of the problem, such that an exhaustive search for the best solution is practically infeasible beyond a certain problem size. When efficient algorithms are not available, a practical approach to obtain an approximate solution to the problem at hand, is to start with an educated guess and gradually refine it until we have a good-enough solution. Roughly speaking, this is how local search heuristics work. These stochastic algorithms navigate the problem search space by iteratively turning the current solution into new candidate solutions, guiding the search towards better solutions. The search performance, therefore, depends on structural aspects of the search space, which in turn depend on the move operator being used to modify solutions. A common way to characterize the search space of a problem is through the study of its fitness landscape, a mathematical object comprising the space of all possible solutions, their value with respect to the optimization objective, and a relationship of neighborhood defined by the move operator. The landscape metaphor is used to explain the search dynamics as a sort of potential function. The concept is indeed similar to that of potential energy surfaces in physical chemistry. Borrowing ideas from that field, we propose to extend to combinatorial landscapes the notion of the inherent network formed by energy minima in energy landscapes. In our case, energy minima are the local optima of the combinatorial problem, and we explore several definitions for the network edges. At first, we perform an exhaustive sampling of local optima basins of attraction, and define weighted transitions between basins by accounting for all the possible ways of crossing the basins frontier via one random move. Then, we reduce the computational burden by only counting the chances of escaping a given basin via random kick moves that start at the local optimum. Finally, we approximate network edges from the search trajectory of simple search heuristics, mining the frequency and inter-arrival time with which the heuristic visits local optima. Through these methodologies, we build a weighted directed graph that provides a synthetic view of the whole landscape, and that we can characterize using the tools of complex networks science. We argue that the network characterization can advance our understanding of the structural and dynamical properties of hard combinatorial landscapes. We apply our approach to prototypical problems such as the Quadratic Assignment Problem, the NK model of rugged landscapes, and the Permutation Flow-shop Scheduling Problem. We show that some network metrics can differentiate problem classes, correlate with problem non-linearity, and predict problem hardness as measured from the performances of trajectory-based local search heuristics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis studies the use of heuristic algorithms in a number of combinatorial problems that occur in various resource constrained environments. Such problems occur, for example, in manufacturing, where a restricted number of resources (tools, machines, feeder slots) are needed to perform some operations. Many of these problems turn out to be computationally intractable, and heuristic algorithms are used to provide efficient, yet sub-optimal solutions. The main goal of the present study is to build upon existing methods to create new heuristics that provide improved solutions for some of these problems. All of these problems occur in practice, and one of the motivations of our study was the request for improvements from industrial sources. We approach three different resource constrained problems. The first is the tool switching and loading problem, and occurs especially in the assembly of printed circuit boards. This problem has to be solved when an efficient, yet small primary storage is used to access resources (tools) from a less efficient (but unlimited) secondary storage area. We study various forms of the problem and provide improved heuristics for its solution. Second, the nozzle assignment problem is concerned with selecting a suitable set of vacuum nozzles for the arms of a robotic assembly machine. It turns out that this is a specialized formulation of the MINMAX resource allocation formulation of the apportionment problem and it can be solved efficiently and optimally. We construct an exact algorithm specialized for the nozzle selection and provide a proof of its optimality. Third, the problem of feeder assignment and component tape construction occurs when electronic components are inserted and certain component types cause tape movement delays that can significantly impact the efficiency of printed circuit board assembly. Here, careful selection of component slots in the feeder improves the tape movement speed. We provide a formal proof that this problem is of the same complexity as the turnpike problem (a well studied geometric optimization problem), and provide a heuristic algorithm for this problem.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Les systèmes multiprocesseurs sur puce électronique (On-Chip Multiprocessor [OCM]) sont considérés comme les meilleures structures pour occuper l'espace disponible sur les circuits intégrés actuels. Dans nos travaux, nous nous intéressons à un modèle architectural, appelé architecture isométrique de systèmes multiprocesseurs sur puce, qui permet d'évaluer, de prédire et d'optimiser les systèmes OCM en misant sur une organisation efficace des nœuds (processeurs et mémoires), et à des méthodologies qui permettent d'utiliser efficacement ces architectures. Dans la première partie de la thèse, nous nous intéressons à la topologie du modèle et nous proposons une architecture qui permet d'utiliser efficacement et massivement les mémoires sur la puce. Les processeurs et les mémoires sont organisés selon une approche isométrique qui consiste à rapprocher les données des processus plutôt que d'optimiser les transferts entre les processeurs et les mémoires disposés de manière conventionnelle. L'architecture est un modèle maillé en trois dimensions. La disposition des unités sur ce modèle est inspirée de la structure cristalline du chlorure de sodium (NaCl), où chaque processeur peut accéder à six mémoires à la fois et où chaque mémoire peut communiquer avec autant de processeurs à la fois. Dans la deuxième partie de notre travail, nous nous intéressons à une méthodologie de décomposition où le nombre de nœuds du modèle est idéal et peut être déterminé à partir d'une spécification matricielle de l'application qui est traitée par le modèle proposé. Sachant que la performance d'un modèle dépend de la quantité de flot de données échangées entre ses unités, en l'occurrence leur nombre, et notre but étant de garantir une bonne performance de calcul en fonction de l'application traitée, nous proposons de trouver le nombre idéal de processeurs et de mémoires du système à construire. Aussi, considérons-nous la décomposition de la spécification du modèle à construire ou de l'application à traiter en fonction de l'équilibre de charge des unités. Nous proposons ainsi une approche de décomposition sur trois points : la transformation de la spécification ou de l'application en une matrice d'incidence dont les éléments sont les flots de données entre les processus et les données, une nouvelle méthodologie basée sur le problème de la formation des cellules (Cell Formation Problem [CFP]), et un équilibre de charge de processus dans les processeurs et de données dans les mémoires. Dans la troisième partie, toujours dans le souci de concevoir un système efficace et performant, nous nous intéressons à l'affectation des processeurs et des mémoires par une méthodologie en deux étapes. Dans un premier temps, nous affectons des unités aux nœuds du système, considéré ici comme un graphe non orienté, et dans un deuxième temps, nous affectons des valeurs aux arcs de ce graphe. Pour l'affectation, nous proposons une modélisation des applications décomposées en utilisant une approche matricielle et l'utilisation du problème d'affectation quadratique (Quadratic Assignment Problem [QAP]). Pour l'affectation de valeurs aux arcs, nous proposons une approche de perturbation graduelle, afin de chercher la meilleure combinaison du coût de l'affectation, ceci en respectant certains paramètres comme la température, la dissipation de chaleur, la consommation d'énergie et la surface occupée par la puce. Le but ultime de ce travail est de proposer aux architectes de systèmes multiprocesseurs sur puce une méthodologie non traditionnelle et un outil systématique et efficace d'aide à la conception dès la phase de la spécification fonctionnelle du système.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The robustness of state feedback solutions to the problem of partial pole placement obtained by a new projection procedure is examined. The projection procedure gives a reduced-order pole assignment problem. It is shown that the sensitivities of the assigned poles in the complete closed-loop system are bounded in terms of the sensitivities of the assigned reduced-order poles, and the sensitivities of the unaltered poles are bounded in terms of the sensitivities of the corresponding open-loop poles. If the assigned poles are well-separated from the unaltered poles, these bounds are expected to be tight. The projection procedure is described in [3], and techniques for finding robust (or insensitive) solutions to the reduced-order problem are given in [1], [2].

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A situation assessment uses reports from sensors to produce hypotheses about a situation at a level of aggregation that is of direct interest to a military commander. A low level of aggregation could mean forming tracks from reports, which is well documented in the tracking literature as track initiation and data association. In this paper there is also discussion on higher level aggregation; assessing the membership of tracks to larger groups. Ideas used in joint tracking and identification are extended, using multi-entity Bayesian networks to model a number of static variables, of which the identity of a target is one. For higher level aggregation a scheme for hypothesis management is required. It is shown how an offline clustering of vehicles can be reduced to an assignment problem.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Telecommunications play a key role in contemporary society. However, as new technologies are put into the market, it also grows the demanding for new products and services that depend on the offered infrastructure, making the problems of planning telecommunications networks, despite the advances in technology, increasingly larger and complex. However, many of these problems can be formulated as models of combinatorial optimization, and the use of heuristic algorithms can help solving these issues in the planning phase. In this project it was developed two pure metaheuristic implementations Genetic algorithm (GA) and Memetic Algorithm (MA) plus a third hybrid implementation Memetic Algorithm with Vocabulary Building (MA+VB) for a problem in telecommunications that is known in the literature as Problem SONET Ring Assignment Problem or SRAP. The SRAP arises during the planning stage of the physical network and it consists in the selection of connections between a number of locations (customers) in order to meet a series of restrictions on the lowest possible cost. This problem is NP-hard, so efficient exact algorithms (in polynomial complexity ) are not known and may, indeed, even exist

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The SONET/SDH Ring Assignment Problem (PALAS) treats to group localities in form of some rings, being respected the traffic's limitations of the equipment. Each ring uses a DXC (Digital Cross Connect) to make the communication with the others, being the DXC the equipment most expensive of the net, minimizing the number total of rings, will minimize the total net cost, problem's objective . This topology in rings provides a bigger capacity of regeneration. The PALAS is a problem in Combinatorial Optimization of NP-hard Class. It can be solved through Heuristics and Metaheuristics. In this text, we use Taboo Search while we keep a set of elite solutions to be used in the formation of a part of the collection of vocabulary's parts that in turn will be used in the Vocabulary Building. The Vocabulary Building will be started case Taboo Search does not reach the best solution for the instance. Three approaches had been implemented: one that only uses vocabulary's parts deriving of Taboo Search, one that it only uses vocabulary's parts randomly generated and a last one that it uses half come of the elite and half randomly generated

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The telecommunications play a fundamental role in the contemporary society, having as one of its main roles to give people the possibility to connect them and integrate them into society in which they operate and, therewith, accelerate development through knowledge. But as new technologies are introduced on the market, increases the demand for new products and services that depend on the infrastructure offered, making the problems of planning of telecommunication networks become increasingly large and complex. Many of these problems, however, can be formulated as combinatorial optimization models, and the use of heuristic algorithms can help solve these issues in the planning phase. This paper proposes the development of a Parallel Evolutionary Algorithm to be applied to telecommunications problem known in the literature as SONET Ring Assignment Problem SRAP. This problem is the class NP-hard and arises during the physical planning of a telecommunication network and consists of determining the connections between locations (customers), satisfying a series of constrains of the lowest possible cost. Experimental results illustrate the effectiveness of the Evolutionary Algorithm parallel, over other methods, to obtain solutions that are either optimal or very close to it

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis proposes an architecture of a new multiagent system framework for hybridization of metaheuristics inspired on the general Particle Swarm Optimization framework (PSO). The main contribution is to propose an effective approach to solve hard combinatory optimization problems. The choice of PSO as inspiration was given because it is inherently multiagent, allowing explore the features of multiagent systems, such as learning and cooperation techniques. In the proposed architecture, particles are autonomous agents with memory and methods for learning and making decisions, using search strategies to move in the solution space. The concepts of position and velocity originally defined in PSO are redefined for this approach. The proposed architecture was applied to the Traveling Salesman Problem and to the Quadratic Assignment Problem, and computational experiments were performed for testing its effectiveness. The experimental results were promising, with satisfactory performance, whereas the potential of the proposed architecture has not been fully explored. For further researches, the proposed approach will be also applied to multiobjective combinatorial optimization problems, which are closer to real-world problems. In the context of applied research, we intend to work with both students at the undergraduate level and a technical level in the implementation of the proposed architecture in real-world problems

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Este trabalho apresenta métodos de geração de colunas para dois importantes problemas de atribuição: o Problema Generalizado de Atribuição (PGA) e o Problema de Atribuição de Antenas a Comutadores (PAAC). O PGA é um dos mais representativos problemas de Otimização Combinatória e consiste em otimizar a atribuição de n tarefas a m agentes, de forma que cada tarefa seja atribuída a exatamente um agente e a capacidade de cada agente seja respeitada. O PAAC consiste em atribuir n antenas a m comutadores em uma rede de telefonia celular, de forma a minimizar os custos de cabeamento entre antenas e comutadores e os custos de transferência de chamadas entre comutadores. A abordagem tradicional de geração de colunas é comparada com as propostas neste trabalho, que utilizam a relaxação lagrangeana/surrogate. São apresentados testes computacionais que demonstram a efetividade dos algoritmos propostos.