875 resultados para Asset Management, Built Environment, Engineering Asset Management, Life Cycle Management, Physical Asset Management


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new approach was taken to delivering a challenging "stewarship of land" unit to over 350 predominantly first year built environment students stewardship. The new approach involved incorporating environmental and planning law into the syllabus, exposing students to a wide range of statutes, selecting legal cases according to a et of criteria and revisiting the material using different modes of delivery and teaching resources. To evaluate the effectiveness of the new approach, the students were surveyed to elicit their learning experience and preferences. The survey found that most students perceived learning about environmental and planning law, including legal cases, worthwhile.----- Areas identified by the surcey for improvement included the perception by some students that: environmenatl and planning law is irrelevant to their discipline and future caree; studying law is dull and sometimes daunting; and the prescribed reading could be omitted.----- To address student perceptions, it is proposed to reorder the topics commencing with local, charismatic topics, while explanding international content and cases, to enlarge and enhance the repertoire of video clips to include sites of legal cawses and development projects, and to reformat the online weekly quizzes to promote reading of primary material.----- Overall, the approach to teaching environmental and planning law to built environment students, including the criteria for selecting legal cases, described in this paper, was found to be effective.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This conference is a landmark gathering of those from around the world concerned with the future of Built environment education and Research. It takes place at a time of great change and opportunity. Around the world the long-standing principles of what, how and who we teach for graduate entry into Built environment professions, is increasingly under review. The need for research and the way in which it is funded, conducted and knowledge shared is also under increasing pressure. Both changes are being triggered by a fast changing and increasingly challenging competitive environment for education and research. Competition for the highest quality of graduate entrants in the right numbers is becoming more intense. Competition between Universities, as funding for education and research comes under ever close scrutiny, is intensifying and we are all being forced to look for more effective and exciting ways of recruting, retaining, enhancing and maximising the achievement of our students and of our staff in their research activities. Competition amongst employees in industry is becoming more intense as professional employers increasingly recognise that people and knowledge are their key strategic resources. Universities are increasingly looking to partnerships with industry, the professions and other Universities to further improve their eduacation, research and innovation activities. These challenges are unfolding at a time of accelerating development in information technologies and systems and in our understanding of principles of knowledge management and pedagogical advancement. This environment presents both opportunities and threats to the world of education.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The construction industry has adapted information technology in its processes in terms of computer aided design and drafting, construction documentation and maintenance. The data generated within the construction industry has become increasingly overwhelming. Data mining is a sophisticated data search capability that uses classification algorithms to discover patterns and correlations within a large volume of data. This paper presents the selection and application of data mining techniques on maintenance data of buildings. The results of applying such techniques and potential benefits of utilising their results to identify useful patterns of knowledge and correlations to support decision making of improving the management of building life cycle are presented and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PROJECT BRIEF Information provided by the Built Environment Industry Innovation Council as background to this project includes the following information on construction and innovation within the industry. • The construction industry contributes around $67 billion to GDP and employs around 970,000 and generates exports of nearly $150 million. • The industry has one of the lowest innovation rates of any industry in Australia, ranking third last across all Australian industries in terms of its proportion of business expenditure on innovation, and second last in terms of the proportion of income generated from innovation (ABS, 2006). • Key innovation challenges include addressing energy and water use efficiency, and housing costs in preparing for the implementation of the Carbon Pollution Reduction Scheme. The sector will need to build its capability and capacity to deliver the technical and operational expertise required.The broader Built Environment Innovation Project aims to address the following two objectives: 1. Identify current innovative practice across the Built Environment industry. 2. Develop a knowledge exchange strategy for this information to be disseminated to all industry stakeholders. Industry practice issues are critical to the built environment industry’s ability to innovate, and the BRITE project from the CRC for Construction Innovation has previously undertaken work to identify the key factors that drive innovation. Part 1 of the current project aims to extend this work by conducting a stocktake of current and emerging innovative practices within the built environment industry. Part 2 of the project addresses the second of these objectives, that is, to recommend a knowledge exchange strategy for promoting the wider uptake of innovative practices that makes the information identified in Part 1 of the study (on emerging innovative practices) accessible to Australian built environment industry stakeholders. The project brief was for the strategy to include a mechanism to enable this information resource to be updated as new initiatives/practices are developed. A better understanding of the built environment industry’s own knowledge infrastructure also has the potential to enhance innovation outcomes for the industry. This project will develop a coordinated knowledge exchange strategy, informed by the best available information on current innovation practices within the industry and suggest directions for gaining a better understanding of: the industry contexts that lead to innovative practices; the industry (including enterprise and individual) drivers for innovation; and appropriate knowledge exchange pathways for delivering future industry innovation. A deliverable of Part 2 will be a recommendation for a knowledge exchange strategy to accelerate adoption of innovative practices in the built environment industry, including resource implications and how such a recommendation could be taken forward as an ongoing resource.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sustainability has been increasingly recognised as an integral part of highway infrastructure development. In practice however, the fact that financial return is still a project’s top priority for many, environmental aspects tend to be overlooked or considered as a burden, as they add to project costs. Sustainability and its implications have a far-reaching effect on each project over time. Therefore, with highway infrastructure’s long-term life span and huge capital demand, the consideration of environmental cost/ benefit issues is more crucial in life-cycle cost analysis (LCCA). To date, there is little in existing literature studies on viable estimation methods for environmental costs. This situation presents the potential for focused studies on environmental costs and issues in the context of life-cycle cost analysis. This paper discusses a research project which aims to integrate the environmental cost elements and issues into a conceptual framework for life cycle costing analysis for highway projects. Cost elements and issues concerning the environment were first identified through literature. Through questionnaires, these environmental cost elements will be validated by practitioners before their consolidation into the extension of existing and worked models of life-cycle costing analysis (LCCA). A holistic decision support framework is being developed to assist highway infrastructure stakeholders to evaluate their investment decision. This will generate financial returns while maximising environmental benefits and sustainability outcome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses a current research project building new understandings and knowledge relevant to R&D funding strategies in Australia. Building on a retrospective analysis of R&D trends and industry outcomes, an industry roadmap will be developed to inform R&D policies more attuned to future industry needs to improve research investment effectiveness. The project will also include analysis of research team formation and management (involving end users from public and private sectors together with research and knowledge institutions), and dissemination of outcomes and uptake in the Australian building and construction industry. The project will build on previous research extending open innovation system theory and network analysis and procurement, focused on R&D. Through the application of dynamic capabilities and strategic foresighting theory, an industry roadmap for future research investment will be developed, providing a stronger foundation for more targeted policy recommendations. This research will contribute to more effective construction processes in the future through more targeted research funding and more effective research partnerships between industry and researchers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The exploratory research presented in this discussion paper was undertaken as input to a major research grant application for the Australian Research Council. The research looks at the contribution of the Australian built environment to meet social and environmental needs. The paper examines the following research questions: What are the main challenges facing the Australian built environment? What types of building innovations might address those challenges? The research questions were addressed through desk-top research, involving an international review of (1) relevant academic literature in top-tier construction management and general management journals, and (2) high profile industry reports published internationally. Future research will involve assessing the diffusion of the identified building innovations and gauging their impact on social and environmental goals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The demand of implementing Whole Life Cycle Costing (WLCC) towards property development has increased since the launch of Value Management Circular 3/2009 by the Economic Planning Unit Malaysia. The circular made compulsory for all public construction projects and programme including property development estimated more than RM 50 Million to conduct WLCC. However, a knowledge gap on WLCC approach still exists and become a barrier among the practitioner in Malaysia particularly in property development industry. The main focus of this paper is to discuss the WLCC approach and introduce the indicator that need to be considered in Malaysia property development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The overarching goal of this project is to better match funding strategies to industry needs to maximise the benefits of R&D to Australia’s infrastructure and building industry. Project partners are: Queensland Department of Public Works; Queensland Transport and Main Roads; Western Australian Department of Treasury and Finance; John Holland; Queensland University of Technology; Swinburne University of Technology; and VTT Technical Research Centre of Finland (Prof Göran Roos). This project has been endorsed by the Australian Built Environment Industry Innovation Council (BEIIC) with Council member Prof Catherin Bull serving on this project’s Steering Committee. This project seeks to: (i) maximise the value of R&D investment in this sector through improved understanding of future industry research needs; and (ii) address the perceived problem of a disproportionately low R&D investment in this sector, relative to the size and national importance of the sector. This research will develop new theory built on open innovation, dynamic capabilities and absorptive capacity theories in the context of strategic foresighting and roadmapping activities. Four project phases have been designed to address this research: 1: Audit and analysis of R&D investment in the Australian built environment since 1990 - access publically available data relating to R&D investments across Australia from public and private organisations to understand past trends. 2: Examine diffusion mechanisms of research and innovation and its impact on public and private organisations – investigate specific R&D investments to determine the process of realising research support, direction-setting, project engagement, impacts and pathways to adoption. 3: Develop a strategic roadmap for the future of this critical Australian industry - assess the likely future landscapes that R&D investment will both respond to and anticipate. 4: Develop policy to maximise the value of R&D investments to public and private organisations – through translating project learnings into policy guidelines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study addresses the research question: ‘What are the diffusion determinants for extreme weather-proofing technology in the Australian built environment?’ In order to effectively identify diffusion determinants, a synthesis of literature in both technical and management fields was conducted from a system-wide perspective. Review results where then interpreted through an innovation system framework, drawn from innovation systems literature, in order to map the current state of extreme weather-proofing technology diffusion in the Australian built environment industry. Drivers and obstacles to optimal diffusion are presented. Results show the important role to be played by Australian governments in facilitating improved weather proofing technology diffusion. This applies to governments in their various roles, but particularly as regulators, clients/owners and investors in research & development and education. In the role as regulators, findings suggest Australian governments should be encouraging the application of innovative finance options and positive end-user incentives to promote the uptake of weather proofing technology. Additionally, in their role as clients/owners, diffusion can be improved by adjusting building and infrastructure specifications to encourage designers and constructors to incorporate extreme weather proofing technology in new and redeveloped built assets. Finally, results suggest greater investment is required in research and development and improved knowledge sharing across the construction supply chain to further mitigate risks associated with greater incidences of extreme weather events.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This project was an initial stage in formulating and management of the optimum budget allocation during the operational, maintenance and rehabilitation phases in high rise residential property development in Malaysia. The principal objective of this project is to develop a framework of Whole Life Cycle Costing for high rise residential property development that will enhance the quality and cost effectiveness of this building type in Malaysia. The researcher investigated 13 building components from 6 high rise residential property developments in Johor, Malaysia to determine the affect and economic impact of component initial cost and quality by applying them to a Whole Life Cycle Cost model approach. The results provide valuable data in respect to the overall cost of specific components over the whole life of a large high rise building. In addition, Dr. Mat Noor also determined the impact and satisfaction of quality of building components through WLCC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A significant reduction in global greenhouse gas (GHG) emissions is a priority, and the preservation of existing building stock presents a significant opportunity to reduce the carbon footprint of our built environment. Within this ‘wicked’ problem context, and moving beyond the ad hoc and incremental performance improvements that have been made to date, collaborative and multidisciplinary efforts are required to find rapid and transformational solutions. Design has emerged as a strategic and redirective practice, and lessons can therefore be learned about transformation and potentially applied in the built environment. The purpose of this paper is to discuss a pragmatic and novel research approach for undertaking such applied design driven research. This paper begins with a discussion of key contributions from design science (rational) and action research (reflective) philosophies in creating an emerging methodological ‘hybrid design approach’. This research approach is then discussed in relation to its application to specific research exploring the processes, methods and lessons from design in heritage building retrofit projects. Drawing on both industry and academic knowledge to ensure relevance and rigour, it is anticipated that the hybrid design approach will be useful for others tackling such complex wicked problems that require context-specific solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Road infrastructure has been considered as one of the most expensive and extensive infrastructure assets of the built environment globally. This asset also impacts the natural environment significantly during different phases of life e.g. construction, use, maintenance and end-of-life. The growing emphasis for sustainable development to meet the needs of future generations requires mitigation of the environmental impacts of road infrastructure during all phases of life e.g. construction, operation and end-of-life disposal (as required). Life-cycle analysis (LCA), a method of quantification of all stages of life, has recently been studied to explore all the environmental components of road projects due to limitations of generic environmental assessments. The LCA ensures collection and assessment of the inputs and outputs relating to any potential environmental factor of any system throughout its life. However, absence of a defined system boundary covering all potential environmental components restricts the findings of the current LCA studies. A review of the relevant published LCA studies has identified that environmental components such as rolling resistance of pavement, effect of solar radiation on pavement(albedo), traffic congestion during construction, and roadway lighting & signals are not considered by most of the studies. These components have potentially higher weightings for environment damage than several commonly considered components such as materials, transportation and equipment. This paper presents the findings of literature review, and suggests a system boundary model for LCA study of road infrastructure projects covering potential environmental components.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the built environment sector, a range of innovations are delivering environmental improvements with mixed success worldwide. The authors of this paper argue that a more “disruptive” form of innovation is needed to bring about significant and systemic change within the sector. Critical to this transition is the development of new behaviours and values. In particular, built environment professionals need to become active change agents in cultivating these new behaviours and values through the development of collaborative visions, scenarios, practices, and ideas. This paper identifies and discusses the critical role that design (in its broadest sense) can play in this process. Drawing on a comprehensive review of literature, the authors highlight a number of transformational opportunities for cross professional learning and sharing between design and built environment disciplines in achieving environmental innovation (eco-innovation). The paper also considers several design-based concepts that have a potential application in the built environment sector including: design thinking, social innovation (human-centered), and disruptive innovation (transformational) approaches. The research findings will assist in building the capabilities of designers and innovators to create sustainable solutions to global problems, and in supporting the social diffusion of systems-changing ideas in the built environment sector.