867 resultados para Artificial intelligence -- Computer programs


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Existing secure software development principles tend to focus on coding vulnerabilities, such as buffer or integer overflows, that apply to individual program statements, or issues associated with the run-time environment, such as component isolation. Here we instead consider software security from the perspective of potential information flow through a program’s object-oriented module structure. In particular, we define a set of quantifiable "security metrics" which allow programmers to quickly and easily assess the overall security of a given source code program or object-oriented design. Although measuring quality attributes of object-oriented programs for properties such as maintainability and performance has been well-covered in the literature, metrics which measure the quality of information security have received little attention. Moreover, existing securityrelevant metrics assess a system either at a very high level, i.e., the whole system, or at a fine level of granularity, i.e., with respect to individual statements. These approaches make it hard and expensive to recognise a secure system from an early stage of development. Instead, our security metrics are based on well-established compositional properties of object-oriented programs (i.e., data encapsulation, cohesion, coupling, composition, extensibility, inheritance and design size), combined with data flow analysis principles that trace potential information flow between high- and low-security system variables. We first define a set of metrics to assess the security quality of a given object-oriented system based on its design artifacts, allowing defects to be detected at an early stage of development. We then extend these metrics to produce a second set applicable to object-oriented program source code. The resulting metrics make it easy to compare the relative security of functionallyequivalent system designs or source code programs so that, for instance, the security of two different revisions of the same system can be compared directly. This capability is further used to study the impact of specific refactoring rules on system security more generally, at both the design and code levels. By measuring the relative security of various programs refactored using different rules, we thus provide guidelines for the safe application of refactoring steps to security-critical programs. Finally, to make it easy and efficient to measure a system design or program’s security, we have also developed a stand-alone software tool which automatically analyses and measures the security of UML designs and Java program code. The tool’s capabilities are demonstrated by applying it to a number of security-critical system designs and Java programs. Notably, the validity of the metrics is demonstrated empirically through measurements that confirm our expectation that program security typically improves as bugs are fixed, but worsens as new functionality is added.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The application of artificial intelligence in finance is relatively new area of research. This project employed artificial neural networks (ANNs) that use both fundamental and technical inputs to predict future prices of widely held Australian stocks and use these predicted prices for stock portfolio selection over a long investment horizon. The research involved the creation and testing of a large number of possible network configurations and draws conclusions about ANN architectures and their overall suitability for the purpose of stock portfolio selection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Dissolved Gas Analysis (DGA) a non destructive test procedure, has been in vogue for a long time now, for assessing the status of power and related transformers in service. An early indication of likely internal faults that may exist in Transformers has been seen to be revealed, to a reasonable degree of accuracy by the DGA. The data acquisition and subsequent analysis needs an expert in the concerned area to accurately assess the condition of the equipment. Since the presence of the expert is not always guaranteed, it is incumbent on the part of the power utilities to requisition a well planned and reliable artificial expert system to replace, at least in part, an expert. This paper presents the application of Ordered Ant Mner (OAM) classifier for the prediction of involved fault. Secondly, the paper also attempts to estimate the remaining life of the power transformer as an extension to the elapsed life estimation method suggested in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The swelling pressure of soil depends upon various soil parameters such as mineralogy, clay content, Atterberg's limits, dry density, moisture content, initial degree of saturation, etc. along with structural and environmental factors. It is very difficult to model and analyze swelling pressure effectively taking all the above aspects into consideration. Various statistical/empirical methods have been attempted to predict the swelling pressure based on index properties of soil. In this paper, the computational intelligence techniques artificial neural network and support vector machine have been used to develop models based on the set of available experimental results to predict swelling pressure from the inputs; natural moisture content, dry density, liquid limit, plasticity index, and clay fraction. The generalization of the model to new set of data other than the training set of data is discussed which is required for successful application of a model. A detailed study of the relative performance of the computational intelligence techniques has been carried out based on different statistical performance criteria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The swelling pressure of soil depends upon various soil parameters such as mineralogy, clay content, Atterberg's limits, dry density, moisture content, initial degree of saturation, etc. along with structural and environmental factors. It is very difficult to model and analyze swelling pressure effectively taking all the above aspects into consideration. Various statistical/empirical methods have been attempted to predict the swelling pressure based on index properties of soil. In this paper, the computational intelligence techniques artificial neural network and support vector machine have been used to develop models based on the set of available experimental results to predict swelling pressure from the inputs; natural moisture content, dry density, liquid limit, plasticity index, and clay fraction. The generalization of the model to new set of data other than the training set of data is discussed which is required for successful application of a model. A detailed study of the relative performance of the computational intelligence techniques has been carried out based on different statistical performance criteria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A discussion is presented on the topic of statistical data analysis in the field of ecology, emphasizing the importance of computer programmes being user friendly for the ecologist. Particular reference is given to TWINSPAN, CANOCO and PATN and the applications of these programmes to tropical fisheries and coastal zone management.