888 resultados para Artificial cracks
Resumo:
Probabilistic robotics, most often applied to the problem of simultaneous localisation and mapping (SLAM), requires measures of uncertainly to accompany observations of the environment. This paper describes how uncertainly can be characterised for a vision system that locates coloured landmark in a typical laboratory environment. The paper describes a model of the uncertainly in segmentation, the internal camera model and the mounting of the camera on the robot. It =plains the implementation of the system on a laboratory robot, and provides experimental results that show the coherence of the uncertainly model,
Resumo:
The use of artificial neural networks (ANNs) to identify and control induction machines is proposed. Two systems are presented: a system to adaptively control the stator currents via identification of the electrical dynamics, and a system to adaptively control the rotor speed via identification of the mechanical and current-fed system dynamics. Both systems are inherently adaptive as well as self-commissioning. The current controller is a completely general nonlinear controller which can be used together with any drive algorithm. Various advantages of these control schemes over conventional schemes are cited, and the combined speed and current control scheme is compared with the standard vector control scheme
Resumo:
This paper proposes the use of artificial neural networks (ANNs) to identify and control an induction machine. Two systems are presented: a system to adaptively control the stator currents via identification of the electrical dynamics; and a system to adaptively control the rotor speed via identification of the mechanical and current-fed system dynamics. Various advantages of these control schemes over other conventional schemes are cited and the performance of the combined speed and current control scheme is compared with that of the standard vector control scheme
Resumo:
Crack is a significant influential factor in soil slope that could leads to rainfall-induced slope instability. Existence of cracks at soil surface will decrease the shear strength and increase the hydraulic conductivity of soil slope. Although previous research has shown the effect of surface-cracks in soil stability, the influence of deep-cracks on soil stability is still unknown. The limited availability of deep crack data due to the difficulty of effective investigate methods could be one of the obstacles. Current technology in electrical resistivity can be used to detect deep-cracks in soil. This paper discusses deep cracks in unsaturated residual soil slopes in Indonesia using electrical resistivity method. The field investigation such as bore hole and SPT tests was carried out at multiple locations in the area where the electrical resistivity testing have been conducted. Subsequently, the results from bore-hole and SPT test were used to verify the results of the electrical resistivity test. This study demonstrates the benefits and limitations of the electrical resistivity in detecting deep-cracks in a residual soil slopes.
Resumo:
Damage detection in structures has become increasingly important in recent years. While a number of damage detection and localization methods have been proposed, few attempts have been made to explore the structure damage with frequency response functions (FRFs). This paper illustrates the damage identification and condition assessment of a beam structure using a new frequency response functions (FRFs) based damage index and Artificial Neural Networks (ANNs). In practice, usage of all available FRF data as an input to artificial neural networks makes the training and convergence impossible. Therefore one of the data reduction techniques Principal Component Analysis (PCA) is introduced in the algorithm. In the proposed procedure, a large set of FRFs are divided into sub-sets in order to find the damage indices for different frequency points of different damage scenarios. The basic idea of this method is to establish features of damaged structure using FRFs from different measurement points of different sub-sets of intact structure. Then using these features, damage indices of different damage cases of the structure are identified after reconstructing of available FRF data using PCA. The obtained damage indices corresponding to different damage locations and severities are introduced as input variable to developed artificial neural networks. Finally, the effectiveness of the proposed method is illustrated and validated by using the finite element modal of a beam structure. The illustrated results show that the PCA based damage index is suitable and effective for structural damage detection and condition assessment of building structures.
Resumo:
AMERICAN playwright Tennessee Williams is renowned for family dramas that deal with sex, desire, infidelity and secrets, topics still taboo when Williams was writing in the 1940s and 50s...
Resumo:
Studies of orthographic skills transfer between languages focus mostly on working memory (WM) ability in alphabetic first language (L1) speakers when learning another, often alphabetically congruent, language. We report two studies that, instead, explored the transferability of L1 orthographic processing skills in WM in logographic-L1 and alphabetic-L1 speakers. English-French bilingual and English monolingual (alphabetic-L1) speakers, and Chinese-English (logographic-L1) speakers, learned a set of artificial logographs and associated meanings (Study 1). The logographs were used in WM tasks with and without concurrent articulatory or visuo-spatial suppression. The logographic-L1 bilinguals were markedly less affected by articulatory suppression than alphabetic-L1 monolinguals (who did not differ from their bilingual peers). Bilinguals overall were less affected by spatial interference, reflecting superior phonological processing skills or, conceivably, greater executive control. A comparison of span sizes for meaningful and meaningless logographs (Study 2) replicated these findings. However, the logographic-L1 bilinguals’ spans in L1 were measurably greater than those of their alphabetic-L1 (bilingual and monolingual) peers; a finding unaccounted for by faster articulation rates or differences in general intelligence. The overall pattern of results suggests an advantage (possibly perceptual) for logographic-L1 speakers, over and above the bilingual advantage also seen elsewhere in third language (L3) acquisition.