986 resultados para Array-CGH
Genomic Signatures Predict Poor Outcome in Undifferentiated Pleomorphic Sarcomas and Leiomyosarcomas
Resumo:
Undifferentiated high-grade pleomorphic sarcomas (UPSs) display aggressive clinical behavior and frequently develop local recurrence and distant metastasis. Because these sarcomas often share similar morphological patterns with other tumors, particularly leiomyosarcomas (LMSs), classification by exclusion is frequently used. In this study, array-based comparative genomic hybridization (array CGH) was used to analyze 20 UPS and 17 LMS samples from untreated patients. The LMS samples presented a lower frequency of genomic alterations compared with the UPS samples. The most frequently altered UPS regions involved gains at 20q13.33 and 7q22.1 and losses at 3p26.3. Gains at 8q24.3 and 19q13.12 and losses at 9p21.3 were frequently detected in the LMS samples. Of these regions, gains at 1q21.3, 11q12.2-q12.3, 16p11.2, and 19q13.12 were significantly associated with reduced overall survival times in LMS patients. A multivariate analysis revealed that gains at 1q21.3 were an independent prognostic marker of shorter survival times in LMS patients (HR = 13.76; P = 0.019). Although the copy number profiles of the UPS and LMS samples could not be distinguished using unsupervised hierarchical clustering analysis, one of the three clusters presented cases associated with poor prognostic outcome (P = 0.022). A relative copy number analysis for the ARNT, SLC27A3, and PBXIP1 genes was performed using quantitative real-time PCR in 11 LMS and 16 UPS samples. Gains at 1q21-q22 were observed in both tumor types, particularly in the UPS samples. These findings provide strong evidence for the existence of a genomic signature to predict poor outcome in a subset of UPS and LMS patients. © 2013 Silveira et al.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: Li-Fraumeni (LFS) and Li-Fraumeni-like (LFL) syndromes are associated to germline TP53 mutations, and are characterized by the development of central nervous system tumors, sarcomas, adrenocortical carcinomas, and other early-onset tumors. Due to the high frequency of breast cancer in LFS/LFL families, these syndromes clinically overlap with hereditary breast cancer (HBC). Germline point mutations in BRCA1, BRCA2, and TP53 genes are associated with high risk of breast cancer. Large rearrangements involving these genes are also implicated in the HBC phenotype. Methods: We have screened DNA copy number changes by MLPA on BRCA1, BRCA2, and TP53 genes in 23 breast cancer patients with a clinical diagnosis consistent with LFS/LFL; most of these families also met the clinical criteria for other HBC syndromes. Results: We found no DNA copy number alterations in the BRCA2 and TP53 genes, but we detected in one patient a 36.4 Kb BRCA1 microdeletion, confirmed and further mapped by array-CGH, encompassing exons 9-19. Breakpoints sequencing analysis suggests that this rearrangement was mediated by flanking Alu sequences. Conclusion: This is the first description of a germline intragenic BRCA1 deletion in a breast cancer patient with a family history consistent with both LFL and HBC syndromes. Our results show that large rearrangements in these known cancer predisposition genes occur, but are not a frequent cause of cancer susceptibility.
Resumo:
The authors describe on a Brazilian girl with coronal synostosis, facial asymmetry, ptosis, brachydactyly, significant learning difficulties, recurrent scalp infections with marked hair loss, and elevated serum immunoglobulin E. Standard lymphocyte karyotype showed a small additional segment in 7p21[46,XX,add(7)(p21)]. Deletion of the TWIST1 gene, detected by Multiplex Ligation Probe-dependent Amplification (MPLA) and array-CGH, was consistent with phenotype of SaethreChotzen syndrome. Array CGH also showed deletion of four other genes at 7p21.1 (SNX13, PRPS1L1, HD9C9, and FERD3L) and the deletion of six genes (CACNA2D2, C3orf18, HEMK1, CISH, MAPKAPK3, and DOCK3) at 3p21.31. Our case reinforces FERD3L as candidate gene for intellectual disability and suggested that genes located in 3p21.3 can be related to hyper IgE phenotype. (C) 2012 Wiley Periodicals, Inc.
Resumo:
Background Split-hand/foot malformation (SHFM)-also known as ectrodactyly-is a congenital disorder characterised by severe malformations of the distal limbs affecting the central rays of hands and/or feet. A distinct entity termed SHFLD presents with SHFM and long bone deficiency. Mouse models suggest that a defect of the central apical ectodermal ridge leads to the phenotype. Although six different loci/mutations (SHFM1-6) have been associated with SHFM, the underlying cause in a large number of cases is still unresolved. Methods High resolution array comparative genomic hybridisation (CGH) was performed in patients with SHFLD to detect copy number changes. Candidate genes were further evaluated for expression and function during limb development by whole mount in situ hybridisation and morpholino knock-down experiments. Results Array CGH showed microduplications on chromosome 17p13.3, a locus previously associated with SHFLD. Detailed analysis of 17 families revealed that this copy number variation serves as a susceptibility factor for a highly variable phenotype with reduced penetrance, particularly in females. Compared to other known causes for SHFLD 17p duplications appear to be the most frequent cause of SHFLD. A similar to 11.8 kb minimal critical region was identified encompassing a single gene, BHLHA9, a putative basic loop helix transcription factor. Whole mount in situ hybridisation showed expression restricted to the limb bud mesenchyme underlying the apical ectodermal ridge in mouse and zebrafish embryos. Knock down of bhlha9 in zebrafish resulted in shortening of the pectoral fins. Conclusions Genomic duplications encompassing BHLHA9 are associated with SHFLD and non-Mendelian inheritance characterised by a high degree of non-penetrance with sex bias. Knock-down of bhlha9 in zebrafish causes severe reduction defects of the pectoral fin, indicating a role for this gene in limb development.
Resumo:
Submicroscopic chromosomal anomalies play an important role in the etiology of craniofacial malformations, including midline facial defects with hypertelorism (MFDH). MFDH is a common feature combination in several conditions, of which Frontonasal Dysplasia is the most frequently encountered manifestation; in most cases the etiology remains unknown. We identified a parent to child transmission of a 6.2 Mb interstitial deletion of chromosome region 2q36.1q36.3 by array-CGH and confirmed by FISH and microsatellite analysis. The patient and her mother both presented an MFDH phenotype although the phenotype in the mother was much milder than her daughter. Inspection of haplotype segregation within the family of 2q36.1 region suggests that the deletion arose on a chromosome derived from the maternal grandfather. Evidences based on FISH, microsatellite and array-CGH analysis point to a high frequency mosaicism for presence of a deleted region 2q36 occurring in blood of the mother. The frequency of mosaicism in other tissues could not be determined. We here suggest that the milder phenotype observed in the proband's mother can be explained by the mosaic state of the deletion. This most likely arose by an early embryonic deletion in the maternal embryo resulting in both gonadal and somatic mosaicism of two cell lines, with and without the deleted chromosome. The occurrence of gonadal mosaicism increases the recurrence risk significantly and is often either underestimated or not even taken into account in genetic counseling where new mutation is suspected. (C) 2012 Elsevier Masson SAS. All rights reserved.
Resumo:
We describe a novel chromosome microdeletion at 15q26.1 detected by oligo-array-CGH in a 6-year-old girl presenting with global development delay, epilepsy, autistic behavior and facial dysmorphisms. Although these features are often present in Angelman syndrome, no alterations were present in the methylation pattern of the Prader-Willi-Angelman critical region. The deletion encompasses only 2 genes: CHD2, which is part of a gene family already involved in CHARGE syndrome, and RGMA which exerts a negative control on axon growth. Deletion of either or both genes could cause the phenotype of this patient. These results provide a further chromosome region requiring evaluation in patients presenting Angelman features. (C) 2011 Elsevier Masson SAS. All rights reserved.
Resumo:
To identify the regions of recurrent copy number abnormality in osteosarcoma and their effect on gene expression, we performed an integrated genome-wide high-resolution array CGH (aCGH) and gene expression profiling analysis on 40 human OS tissues and 12 OS cell lines. This analysis identified several recurrent chromosome regions that contain genes that show a gene dosage effect on gene expression. A further search, performed on those genes that were over-expressed and localized in the frequently amplified chromosomal regions, greatly reduced the number of candidate genes while their characterization using gene ontology (GO) analysis suggests the importance of the deregulation of the G1-to-S phase in the development of the disease. We also identified frequent deletions on 3q in the vicinity of LSAMP and performed a fine mapping analysis of the breakpoints. We precisely mapped the breakpoints in several instances and demonstrated that the majority do not involve the LSAMP gene itself, and that they appear to form by a process of non-homologous end joining. In addition, aCGH analysis revealed frequent gains of IGF1R that were highly correlated with its protein level. Blockade of IGF1R in OS cell lines with high copy number gain led to growth inhibition suggesting that IGF1R may be a viable drug target in OS, particularly in patients with copy number driven overexpression of this receptor.
Resumo:
I linfomi primitivi cutanei riconosciuti nella classificazione della WHO/EORTC si presentano come “entità cliniche distinte” su base clinica, morfologica, immunofenotipica e molecolare. Il fenotipo linfocitario T helper CD4+ caratterizza i CTCL, ma alcune entità a prognosi aggressiva presentano un immunofenotipo citotossico CD8+. Numerosi studi di citogenetica (CGH) e gene-expression profiling (GEP) sono stati condotti negli ultimi anni sui CTCL e sono state riscontrate numerose aberrazioni cromosomiche correlate ai meccanismi di controllo del ciclo cellulare. Scopo del nostro studio è la valutazione delle alterazioni genomiche coinvolte nella tumorigenesi di alcuni CTCL aggressivi: il linfoma extranodale NK/T nasal-type, il linfoma primitivo cutaneo aggressivo epidermotropo (AECTCL) e il gruppo dei PTCL/NOS pleomorfo CD8+. Il materiale bioptico dei pazienti è stato sottoposto alla metodica dell’array-CGH per identificare le anomalie cromosomiche; in alcuni casi di AECTCL è stata applicata la GEP, che evidenzia il profilo di espressione genica delle cellule neoplastiche. I dati ottenuti sono stati valutati in modo statistico, evidenziando le alterazioni cromosomiche comuni significative di ogni entità. In CGH, sono state evidenziate alcune aberrazioni comuni fra le entità studiate, la delezione di 9p21.3, l’amplificazione di 17q, 19p13, 19q13.11-q13.32 , 12q13 e 16p13.3, che determinano la delezione dei geni CDKN2A e CDKN2B e l’attivazione del JAK/STAT signaling pathway. Altre alterazioni definiscono l’amplificazione di c-MYC (8q24) e CCND1/CDK4-6 (11q13). In particolare, sono state evidenziate numerose anomalie genomiche comuni in casi di AECTCL e PTCL/NOS pleomorfo. L’applicazione della GEP in 5 casi di AECTCL ha confermato l’alterata espressione dei geni CDKN2A, JAK3 e STAT6, che potrebbero avere un ruolo diretto nella linfomagenesi. Lo studio di un numero maggiore di casi in GEP e l’introduzione delle nuove indagini molecolari come l’analisi dei miRNA, della whole-exome e whole genome sequences consentiranno di evidenziare alterazioni molecolari correlate con la prognosi, definendo anche nuovi target terapeutici.
Resumo:
Lo scopo del progetto triennale del dottorato di ricerca è lo studio delle alterazioni genetiche in un gruppo di pazienti affetti da micosi fungoide ed un gruppo di pazienti affetti da sindrome di Sezary. Dalle biopsie cutanee è stato estratto il DNA e analizzato, comparandolo con DNA sano di riferimento, utilizzando la tecnica array-CGH, allo scopo di identificare la presenza di geni potenzialmente implicati nel processo di oncogenesi. Questa analisi è stata eseguita, per ogni paziente, su biopsie effettuate ad una fase iniziale di malattia e ad una fase di progressione della stessa. Sugli stessi pazienti è stata inoltre eseguita un’analisi miRNA. Si ipotizza che il profilo d’espressione dei miRNA possa infatti dare informazioni utili per predire lo stato di malattia, il decorso clinico, la progressione tumorale e la riposta terapeutica. Questo lavoro è stato poi eseguito su biopsie effettuate in pazienti affetti da sindrome di Sezary che, quando non insorge primitivamente come tale, si può considerare una fase evolutiva della micosi fungoide. La valutazione delle alterazioni genetiche, ed in particolare la correlazione esistente tra duplicazione e delezione genetica e sovra/sottoespressione genetica, è stata possibile attraverso l’interpretazione e la comparazione dei dati ottenuti attraverso le tecniche array-CGH e miRNA. Sono stati comparati i risultati ottenuti per valutare quali fossero le alterazioni cromosomiche riscontrate nei diversi stadi di malattia. L’applicazione dell’array-CGH e della metodica di analisi mi-RNA si sono rivelate molto utili per l’identificazione delle diverse aberrazioni cromosomiche presenti nel genoma dei pazienti affetti da micosi fungoide e sindrome di Sezary, per valutare la prognosi del paziente e per cercare di migliorare o trovare nuove linee terapeutiche per il trattamento delle due patologie. Lo studio di questi profili può rappresentare quindi uno strumento di grande importanza nella classificazione e nella diagnosi dei tumori.
Resumo:
Carcinoids are slow-growing neuroendocrine tumors that, in the lung, can be subclassified as typical (TC) or atypical (AC). To identify genetic alterations that improve the prediction of prognosis, we investigated 34 carcinoid tumors of the lung (18 TCs, 15 ACs, and 1 unclassified) by using array comparative genomic hybridization (array CGH) on 3700 genomic bacterial artificial chromosome arrays (resolution ?1 Mb). When comparing ACs with TCs, the data revealed: i) a significant difference in the average number of chromosome arms altered (9.6 versus 4.2, respectively; P = 0.036), with one subgroup of five ACs having more than 15 chromosome arms altered; ii) chromosomal changes in 30% of ACs or more with additions at 9q (?1 Mb) and losses at 1p, 2q, 10q, and 11q; and iii) 11q deletions in 8 of 15 ACs versus 1 of 18 TCs (P = 0.004), which was confirmed via fluorescence in situ hybridization. The four critical regions of interest in 45% ACs or more comprised 11q14.1, 11q22.1-q22.3, 11q22.3-q23.2, and 11q24.2-q25, all telomeric of MEN1 at 11q13. Results were correlated with patient clinical data and long-term follow-up. Thus, there is a strong association of 11q22.3-q25 loss with poorer prognosis, alone or in combination with absence of 9q34.11 alterations (P = 0.0022 and P = 0.00026, respectively).
Resumo:
We report on a de novo submicroscopic deletion of 20q13.33 identified by subtelomeric fluorescence in situ hybridization (FISH) in a 4-year-old girl with learning difficulties, hyperlaxity and strabismus, but without obvious dysmorphic features. Further investigations by array-based comparative genomic hybridization (array-CGH) and FISH analysis allowed us to delineate the smallest reported subterminal deletion of chromosome 20q, spanning a 1.1-1.6 Mb with a breakpoint localized between BAC RP5-887L7 and RP11-261N11. The genes CHRNA4 and KCNQ2 implicated in autosomal dominant epilepsy are included in the deletion interval. Subterminal 20q deletions as found in the present patient have, to our knowledge, only been reported in three patients. We review the clinical and behavioral phenotype of such "pure" subterminal 20q deletions.
Resumo:
Background: High grade serous carcinoma whether ovarian, tubal or primary peritoneal, continues to be the most lethal gynecologic malignancy in the USA. Although combination chemotherapy and aggressive surgical resection has improved survival in the past decade the majority of patients still succumb to chemo-resistant disease recurrence. It has recently been reported that amplification of 5q31-5q35.3 is associated with poor prognosis in patients with high grade serous ovarian carcinoma. Although the amplicon contains over 50 genes, it is notable for the presence of several members of the fibroblast growth factor signaling axis. In particular acidic fibroblast growth factor (FGF1) has been demonstrated to be one of the driving genes in mediating the observed prognostic effect of the amplicon in ovarian cancer patients. This study seeks to further validate the prognostic value of fibroblast growth receptor 4 (FGFR4), another candidate gene of the FGF/FGFR axis located in the same amplicon. The emphasis will be delineating the role the FGF1/FGFR4 signaling axis plays in high grade serous ovarian carcinoma; and test the feasibility of targeting the FGF1/FGFR4 axis therapeutically. Materials and Methods: Spearman and Pearson correlation studies on data generated from array CGH and transcriptome profiling analyses on 51 microdissected tumor samples were used to identify genes located on chromosome 5q31-35.3 that showed significant correlation between DNA and mRNA copy numbers. Significant correlation between FGF1 and FGFR4 DNA copy numbers was further validated by qPCR analysis on DNA isolated from 51 microdissected tumor samples. Immunolocalization and quantification of FGFR4 expression were performed on paraffin embedded tissue samples from 183 cases of high-grade serous ovarian carcinoma. The expression was then correlated with clinical data to assess impact on survival. The expression of FGF1 and FGFR4 in vitro was quantified by real-time PCR and western blotting in six high-grade serous ovarian carcinoma cell lines and compared to those in human ovarian surface epithelial cells to identify overexpression. The effect of FGF1 on these cell lines after serum starvation was quantified for in vitro cellular proliferation, migration/invasion, chemoresistance and survival utilizing a combination of commercially available colorimetric, fluorometric and electrical impedance assays. FGFR4 expression was then transiently silenced via siRNA transfection and the effects on response to FGF1, cellular proliferation, and migration were quantified. To identify relevant cellular pathways involved, responsive cell lines were transduced with different transcription response elements using the Cignal-Lenti reporter system and treated with FGF1 with and without transient FGFR4 knock down. This was followed by western blot confirmation for the relevant phosphoproteins. Anti-FGF1 antibodies and FGFR trap proteins were used to attempt inhibition of FGF mediated phenotypic changes and relevant signaling in vitro. Orthotopic intraperitoneal tumors were established in nude mice using serous cell lines that have been previously transfected with luciferase expressing constructs. The mice were then treated with FGFR trap protein. Tumor progression was then followed via bioluminescent imaging. The FGFR4 gene from 52 clinical samples was sequenced to screen for mutations. Results: FGFR4 DNA and mRNA copy numbers were significantly correlated and FGFR4 DNA copy number was significantly correlated with that of FGF1. Survival of patients with high FGFR4 expressing tumors was significantly shorter that those with low expression(median survival 28 vs 55 month p< 0.001) In a multivariate cox regression model FGFR expression significantly increased risk of death (HR 2.1, p<0.001). FGFR4 expression was significantly higher in all cell lines tested compared to HOSE, OVCA432 cell line in particular had very high expression suggesting amplification. FGF1 was also particularly overexpressed in OVCA432. FGF1 significantly increased cell survival after serum deprivation in all cell lines. Transient knock down of FGFR4 caused significant reduction in cell migration and proliferation in vitro and significantly decreased the proliferative effects of FGF1 in vitro. FGFR1, FGFR4 traps and anti-FGF1 antibodies did not show activity in vitro. OVCA432 transfected with the cignal lenti reporter system revealed significant activation of MAPK, NFkB and WNT pathways, western blotting confirmed the results. Reverse phase protein array (RPPA) analysis also showed activation of MAPK, AKT, WNT pathways and down regulation of E Cadherin. FGFR trap protein significantly reduced tumor growth in vivo in an orthotopic mouse model. Conclusions: Overexpression and amplification of several members of the FGF signaling axis present on the amplicon 5q31-35.3 is a negative prognostic indicator in high grade serous ovarian carcinoma and may drive poor survival associated with that amplicon. Activation of The FGF signaling pathway leads to downstream activation of MAPK, AKT, WNT and NFkB pathways leading to a more aggressive cancer phenotype with increased tumor growth, evasion of apoptosis and increased migration and invasion. Inhibition of FGF pathway in vivo via FGFR trap protein leads to significantly decreased tumor growth in an orthotopic mouse model.