864 resultados para Arnold, Eve , 1913-2012, American
Resumo:
Ion channels are membrane proteins that open and close at random and play a vital role in the electrical dynamics of excitable cells. The stochastic nature of the conformational changes these proteins undergo can be significant, however current stochastic modeling methodologies limit the ability to study such systems. Discrete-state Markov chain models are seen as the "gold standard," but are computationally intensive, restricting investigation of stochastic effects to the single-cell level. Continuous stochastic methods that use stochastic differential equations (SDEs) to model the system are more efficient but can lead to simulations that have no biological meaning. In this paper we show that modeling the behavior of ion channel dynamics by a reflected SDE ensures biologically realistic simulations, and we argue that this model follows from the continuous approximation of the discrete-state Markov chain model. Open channel and action potential statistics from simulations of ion channel dynamics using the reflected SDE are compared with those of a discrete-state Markov chain method. Results show that the reflected SDE simulations are in good agreement with the discrete-state approach. The reflected SDE model therefore provides a computationally efficient method to simulate ion channel dynamics while preserving the distributional properties of the discrete-state Markov chain model and also ensuring biologically realistic solutions. This framework could easily be extended to other biochemical reaction networks. © 2012 American Physical Society.
Resumo:
Based on the molecular dynamics (MD) simulation and the classical Euler-Bernoulli beam theory, a fundamental study of the vibrational performance of the Ag nanowire (NW) is carried out. A comprehensive analysis of the quality (Q)-factor, natural frequency, beat vibration, as well as high vibration mode is presented. Two excitation approaches, i.e., velocity excitation and displacement excitation, have been successfully implemented to achieve the vibration of NWs. Upon these two kinds of excitations, consistent results are obtained, i.e., the increase of the initial excitation amplitude will lead to a decrease to the Q-factor, and moderate plastic deformation could increase the first natural frequency. Meanwhile, the beat vibration driven by a single relatively large excitation or two uniform excitations in both two lateral directions is observed. It is concluded that the nonlinear changing trend of external energy magnitude does not necessarily mean a nonconstant Q-factor. In particular, the first order natural frequency of the Ag NW is observed to decrease with the increase of temperature. Furthermore, comparing with the predictions by Euler- Bernoulli beam theory, the MD simulation provides a larger and smaller first vibration frequencies for the clamped-clamped and clamped-free thin Ag NWs, respectively. Additionally, for thin NWs, the first order natural frequency exhibits a parabolic relationship with the excitation magnitudes. The frequencies of the higher vibration modes tend to be low in comparison to Euler-Bernoulli beam theory predictions. A combined initial excitation is proposed which is capable to drive the NW under a multi-mode vibration and arrows the coexistence of all the following low vibration modes. This work sheds lights on the better understanding of the mechanical properties of NWs and benefits the increasing utilities of NWs in diverse nano-electronic devices.
Resumo:
We demonstrate that two characteristic Sus-like proteins encoded within a Polysaccharide Utilisation Locus (PUL) bind strongly to cellulosic substrates and interact with plant primary cell walls. This shows associations between uncultured Bacteroidetes-affiliated lineages and cellulose in the rumen, and thus presents new PUL-derived targets to pursue regarding plant biomass degradation.
Resumo:
STUDY DESIGN: Controlled laboratory study. OBJECTIVES: To investigate the reliability and concurrent validity of photographic measurements of hallux valgus angle compared to radiographs as the criterion standard. BACKGROUND: Clinical assessment of hallux valgus involves measuring alignment between the first toe and metatarsal on weight-bearing radiographs or visually grading the severity of deformity with categorical scales. Digital photographs offer a noninvasive method of measuring deformity on an exact scale; however, the validity of this technique has not previously been established. METHODS: Thirty-eight subjects (30 female, 8 male) were examined (76 feet, 54 with hallux valgus). Computer software was used to measure hallux valgus angle from digital records of bilateral weight-bearing dorsoplantar foot radiographs and photographs. One examiner measured 76 feet on 2 occasions 2 weeks apart, and a second examiner measured 40 feet on a single occasion. Reliability was investigated by intraclass correlation coefficients and validity by 95% limits of agreement. The Pearson correlation coefficient was also calculated. RESULTS: Intrarater and interrater reliability were very high (intraclass correlation coefficients greater than 0.96) and 95% limits of agreement between photographic and radiographic measurements were acceptable. Measurements from photographs and radiographs were also highly correlated (Pearson r = 0.96). CONCLUSIONS: Digital photographic measurements of hallux valgus angle are reliable and have acceptable validity compared to weight-bearing radiographs. This method provides a convenient and precise tool in assessment of hallux valgus, while avoiding the cost and radiation exposure associated with radiographs.
Resumo:
Anomalous subdiffusion equations have in recent years received much attention. In this paper, we consider a two-dimensional variable-order anomalous subdiffusion equation. Two numerical methods (the implicit and explicit methods) are developed to solve the equation. Their stability, convergence and solvability are investigated by the Fourier method. Moreover, the effectiveness of our theoretical analysis is demonstrated by some numerical examples. © 2011 American Mathematical Society.
Resumo:
This work is a theoretical investigation into the coupling of a single excited quantum emitter to the plasmon mode of a V groove waveguide. The V groove waveguide consists of a triangular channel milled in gold and the emitter is modeled as a dipole emitter, and could represent a quantum dot, nitrogen vacancy in diamond, or similar. In this work the dependence of coupling efficiency of emitter to plasmon mode is determined for various geometrical parameters of the emitter-waveguide system. Using the finite element method, the effect on coupling efficiency of the emitter position and orientation, groove angle, groove depth, and tip radius, is studied in detail. We demonstrate that all parameters, with the exception of groove depth, have a significant impact on the attainable coupling efficiency. Understanding the effect of various geometrical parameters on the coupling between emitters and the plasmonic mode of the waveguide is essential for the design and optimization of quantum dot–V groove devices.
Resumo:
An increasing number of researchers have hypothesized that ozone may be involved in the particle formation processes that occur during printing, however no studies have investigated this further. In the current study, this hypothesis was tested in a chamber study by adding supplemental ozone to the chamber after a print job without measurable ozone emissions. Subsequent particle number concentration and size distribution measurements showed that new particles were formed minutes after the addition of ozone. The results demonstrated that ozone did react with printer-generated volatile organic compounds (VOCs) to form secondary organic aerosols (SOAs). The hypothesis was further confirmed by the observation of correlations among VOCs, ozone, and particles concentrations during a print job with measurable ozone emissions. The potential particle precursors were identified by a number of furnace tests, which suggested that squalene and styrene were the most likely SOA precursors with respect to ozone. Overall, this study significantly improved scientific understanding of the formation mechanisms of printer-generated particles, and highlighted the possible SOA formation potential of unsaturated nonterpene organic compounds by ozone-initiated reactions in the indoor environment. © 2011 American Chemical Society.
Resumo:
The design-build (DB) system is a popular and effective delivery method of construction projects worldwide. After owners decide to procure their projects through the DB system, they may wish to determine the optimal proportion of design to be provided in the DB request for proposals (RFPs), which serve as solicitations for design-builders and describe the scope of work. However, this presents difficulties to DB owners and there is little, if any, systematic research in this area. This paper reports on an empirical study in the USA entailing both an online questionnaire survey and Delphi survey to identify and evaluate the factors influencing owners’ decisions in determining the proportion of design to include in DB RFPs. Eleven factors are identified, i.e. (1) clarity of project scope; (2) applicability of performance specifications; (3) desire for design innovation; (4) site constraints; (5) availability of competent design-builders; (6) project control requirements; (7) user group involvement level; (8) third party requirements; (9) owner experience with DB; (10) project complexity; and (11) schedule constraints. A statistically significant agreement on the eleven factors was also obtained from the (mainly non-owner) Delphi experts. Although some of the experts hold different opinions on how these factors affect the proportion of design, these findings furnish various stakeholders with a better understanding of the delivery process of DB projects and the appropriate provision of project information in DB RFPs. As the result is mainly industry opinion concerning the optimal proportion of design, in addition and for completeness, future studies should be conducted to obtain a big picture of the optimal proportion of design by means of seeking owners’ inputs.
Resumo:
Reciprocal interactions between Src family kinases (SFKs) and focal adhesion kinase (FAK) are critical during changes in cell attachment. Recently it has been recognized that another SFK substrate, CUB-domain-containing protein 1 (CDCP1), is differentially phosphorylated during these events. However, the molecular processes underlying SFK-mediated phosphorylation of CDCP1 are poorly understood. Here we identify a novel mechanism in which FAK tyrosine 861 and CDCP1-Tyr-734 compete as SFK substrates and demonstrate cellular settings in which SFKs switch between these sites. Our results show that stable CDCP1 expression induces robust SFK-mediated phosphorylation of CDCP1-Tyr-734 with concomitant loss of p-FAK-Tyr-861 in adherent HeLa cells. SFK substrate switching in these cells is dependent on the level of expression of CDCP1 and is also dependent on CDCP1-Tyr-734 but is independent of CDCP1-Tyr-743 and -Tyr-762. In HeLa CDCP1 cells, engagement of SFKs with CDCP1 is accompanied by an increase in phosphorylation of Src-Tyr-416 and a change in cell morphology to a fibroblastic appearance dependent on CDCP1-Tyr-734. SFK switching between FAK-Tyr-861 and CDCP1-Tyr-734 also occurs during changes in adhesion of colorectal cancer cell lines endogenously expressing these two proteins. Consistently, increased p-FAK-Tyr-861 levels and a more epithelial morphology are seen in colon cancer SW480 cells silenced for CDCP1. Unlike protein kinase Cδ, FAK does not appear to form a trimeric complex with Src and CDCP1. These data demonstrate novel aspects of the dynamics of SFK-mediated cell signaling that may be relevant during cancer progression.
Resumo:
BACKGROUND: The efficacy of nutritional support in the management of malnutrition in chronic obstructive pulmonary disease (COPD) is controversial. Previous meta-analyses, based on only cross-sectional analysis at the end of intervention trials, found no evidence of improved outcomes. OBJECTIVE: The objective was to conduct a meta-analysis of randomized controlled trials (RCTs) to clarify the efficacy of nutritional support in improving intake, anthropometric measures, and grip strength in stable COPD. DESIGN: Literature databases were searched to identify RCTs comparing nutritional support with controls in stable COPD. RESULTS: Thirteen RCTs (n = 439) of nutritional support [dietary advice (1 RCT), oral nutritional supplements (ONS; 11 RCTs), and enteral tube feeding (1 RCT)] with a control comparison were identified. An analysis of the changes induced by nutritional support and those obtained only at the end of the intervention showed significantly greater increases in mean total protein and energy intakes with nutritional support of 14.8 g and 236 kcal daily. Meta-analyses also showed greater mean (±SE) improvements in favor of nutritional support for body weight (1.94 ± 0.26 kg, P < 0.001; 11 studies, n = 308) and grip strength (5.3%, P < 0.050; 4 studies, n = 156), which was not shown by ANOVA at the end of the intervention, largely because of bias associated with baseline imbalance between groups. CONCLUSION: This systematic review and meta-analysis showed that nutritional support, mainly in the form of ONS, improves total intake, anthropometric measures, and grip strength in COPD. These results contrast with the results of previous analyses that were based on only cross-sectional measures at the end of intervention trials.
Resumo:
We derive a semianalytical model to describe the interaction of a single photon emitter and a collection of arbitrarily shaped metal nanoparticles. The theory treats the metal nanoparticles classically within the electrostatic eigenmode method, wherein the surface plasmon resonances of collections of nanoparticles are represented by the hybridization of the plasmon modes of the noninteracting particles. The single photon emitter is represented by a quantum mechanical two-level system that exhibits line broadening due to a finite spontaneous decay rate. Plasmon-emitter coupling is described by solving the resulting Bloch equations. We illustrate the theory by studying model systems consisting of a single emitter coupled to one, two, and three nanoparticles, and we also compare the predictions of our model to published experimental data. ©2012 American Physical Society.
Resumo:
The reconstruction of large defects (>10 mm) in humans usually relies on bone graft transplantation. Limiting factors include availability of graft material, comorbidity, and insufficient integration into the damaged bone. We compare the gold standard autograft with biodegradable composite scaffolds consisting of medical-grade polycaprolactone and tricalcium phosphate combined with autologous bone marrow-derived mesenchymal stem cells (MSCs) or recombinant human bone morphogenetic protein 7 (rhBMP-7). Critical-sized defects in sheep - a model closely resembling human bone formation and structure - were treated with autograft, rhBMP-7, or MSCs. Bridging was observed within 3 months for both the autograft and the rhBMP-7 treatment. After 12 months, biomechanical analysis and microcomputed tomography imaging showed significantly greater bone formation and superior strength for the biomaterial scaffolds loaded with rhBMP-7 compared to the autograft. Axial bone distribution was greater at the interfaces. With rhBMP-7, at 3 months, the radial bone distribution within the scaffolds was homogeneous. At 12 months, however, significantly more bone was found in the scaffold architecture, indicating bone remodeling. Scaffolds alone or with MSC inclusion did not induce levels of bone formation comparable to those of the autograft and rhBMP-7 groups. Applied clinically, this approach using rhBMP-7 could overcome autograft-associated limitations.
Resumo:
Pan et al. claim that our results actually support a strong linear positive relationship between productivity and richness, whereas Fridley et al. contend that the data support a strong humped relationship. These responses illustrate how preoccupation with bivariate patterns distracts from a deeper understanding of the multivariate mechanisms that control these important ecosystem properties.
Resumo:
In urbanised areas, the flood flows constitute a hazard to populations and infrastructure as illustrated during major floods in 2011. During the 2011 Brisbane River flood, some turbulent velocity data were collected using acoustic Doppler velocimetry in an inundated street. The field deployment showed some unusual features of flood flow in the urban environment. That is, the water elevations and velocities fluctuated with distinctive periods between 50 and 100 s linked with some local topographic effects. The instantaneous velocity data were analysed using a triple decomposition. The velocity fluctuations included a large energy component in the slow fluctuation range, while the turbulent motion components were much smaller. The suspended sediment data showed some significant longitudinal flux. Altogether the results highlighted that the triple decomposition approach originally developed for period flows is well suited to complicated flows in an inundated urban environment.