897 resultados para Architectural Design Exhibition
Resumo:
We use a detailed study of the knowledge work around visual representations to draw attention to the multidimensional nature of `objects'. Objects are variously described in the literatures as relatively stable or in flux; as abstract or concrete; and as used within or across practices. We clarify these dimensions, drawing on and extending the literature on boundary objects, and connecting it with work on epistemic and technical objects. In particular, we highlight the epistemic role of objects, using our observations of knowledge work on an architectural design project to show how, in this setting, visual representations are characterized by a `lack' or incompleteness that precipitates unfolding. The conceptual design of a building involves a wide range of technical, social and aesthetic forms of knowledge that need to be developed and aligned. We explore how visual representations are used, and how these are meaningful to different stakeholders, eliciting their distinct contributions. As the project evolves and the drawings change, new issues and needs for knowledge work arise. These objects have an `unfolding ontology' and are constantly in flux, rather than fully formed. We discuss the implications for wider understandings of objects in organizations and for how knowledge work is achieved in practice.
Resumo:
The United Nation Intergovernmental Panel on Climate Change (IPCC) makes it clear that climate change is due to human activities and it recognises buildings as a distinct sector among the seven analysed in its 2007 Fourth Assessment Report. Global concerns have escalated regarding carbon emissions and sustainability in the built environment. The built environment is a human-made setting to accommodate human activities, including building and transport, which covers an interdisciplinary field addressing design, construction, operation and management. Specifically, Sustainable Buildings are expected to achieve high performance throughout the life-cycle of siting, design, construction, operation, maintenance and demolition, in the following areas: • energy and resource efficiency; • cost effectiveness; • minimisation of emissions that negatively impact global warming, indoor air quality and acid rain; • minimisation of waste discharges; and • maximisation of fulfilling the requirements of occupants’ health and wellbeing. Professionals in the built environment sector, for example, urban planners, architects, building scientists, engineers, facilities managers, performance assessors and policy makers, will play a significant role in delivering a sustainable built environment. Delivering a sustainable built environment needs an integrated approach and so it is essential for built environment professionals to have interdisciplinary knowledge in building design and management . Building and urban designers need to have a good understanding of the planning, design and management of the buildings in terms of low carbon and energy efficiency. There are a limited number of traditional engineers who know how to design environmental systems (services engineer) in great detail. Yet there is a very large market for technologists with multi-disciplinary skills who are able to identify the need for, envision and manage the deployment of a wide range of sustainable technologies, both passive (architectural) and active (engineering system),, and select the appropriate approach. Employers seek applicants with skills in analysis, decision-making/assessment, computer simulation and project implementation. An integrated approach is expected in practice, which encourages built environment professionals to think ‘out of the box’ and learn to analyse real problems using the most relevant approach, irrespective of discipline. The Design and Management of Sustainable Built Environment book aims to produce readers able to apply fundamental scientific research to solve real-world problems in the general area of sustainability in the built environment. The book contains twenty chapters covering climate change and sustainability, urban design and assessment (planning, travel systems, urban environment), urban management (drainage and waste), buildings (indoor environment, architectural design and renewable energy), simulation techniques (energy and airflow), management (end-user behaviour, facilities and information), assessment (materials and tools), procurement, and cases studies ( BRE Science Park). Chapters one and two present general global issues of climate change and sustainability in the built environment. Chapter one illustrates that applying the concepts of sustainability to the urban environment (buildings, infrastructure, transport) raises some key issues for tackling climate change, resource depletion and energy supply. Buildings, and the way we operate them, play a vital role in tackling global greenhouse gas emissions. Holistic thinking and an integrated approach in delivering a sustainable built environment is highlighted. Chapter two demonstrates the important role that buildings (their services and appliances) and building energy policies play in this area. Substantial investment is required to implement such policies, much of which will earn a good return. Chapters three and four discuss urban planning and transport. Chapter three stresses the importance of using modelling techniques at the early stage for strategic master-planning of a new development and a retrofit programme. A general framework for sustainable urban-scale master planning is introduced. This chapter also addressed the needs for the development of a more holistic and pragmatic view of how the built environment performs, , in order to produce tools to help design for a higher level of sustainability and, in particular, how people plan, design and use it. Chapter four discusses microcirculation, which is an emerging and challenging area which relates to changing travel behaviour in the quest for urban sustainability. The chapter outlines the main drivers for travel behaviour and choices, the workings of the transport system and its interaction with urban land use. It also covers the new approach to managing urban traffic to maximise economic, social and environmental benefits. Chapters five and six present topics related to urban microclimates including thermal and acoustic issues. Chapter five discusses urban microclimates and urban heat island, as well as the interrelationship of urban design (urban forms and textures) with energy consumption and urban thermal comfort. It introduces models that can be used to analyse microclimates for a careful and considered approach for planning sustainable cities. Chapter six discusses urban acoustics, focusing on urban noise evaluation and mitigation. Various prediction and simulation methods for sound propagation in micro-scale urban areas, as well as techniques for large scale urban noise-mapping, are presented. Chapters seven and eight discuss urban drainage and waste management. The growing demand for housing and commercial developments in the 21st century, as well as the environmental pressure caused by climate change, has increased the focus on sustainable urban drainage systems (SUDS). Chapter seven discusses the SUDS concept which is an integrated approach to surface water management. It takes into consideration quality, quantity and amenity aspects to provide a more pleasant habitat for people as well as increasing the biodiversity value of the local environment. Chapter eight discusses the main issues in urban waste management. It points out that population increases, land use pressures, technical and socio-economic influences have become inextricably interwoven and how ensuring a safe means of dealing with humanity’s waste becomes more challenging. Sustainable building design needs to consider healthy indoor environments, minimising energy for heating, cooling and lighting, and maximising the utilisation of renewable energy. Chapter nine considers how people respond to the physical environment and how that is used in the design of indoor environments. It considers environmental components such as thermal, acoustic, visual, air quality and vibration and their interaction and integration. Chapter ten introduces the concept of passive building design and its relevant strategies, including passive solar heating, shading, natural ventilation, daylighting and thermal mass, in order to minimise heating and cooling load as well as energy consumption for artificial lighting. Chapter eleven discusses the growing importance of integrating Renewable Energy Technologies (RETs) into buildings, the range of technologies currently available and what to consider during technology selection processes in order to minimise carbon emissions from burning fossil fuels. The chapter draws to a close by highlighting the issues concerning system design and the need for careful integration and management of RETs once installed; and for home owners and operators to understand the characteristics of the technology in their building. Computer simulation tools play a significant role in sustainable building design because, as the modern built environment design (building and systems) becomes more complex, it requires tools to assist in the design process. Chapter twelve gives an overview of the primary benefits and users of simulation programs, the role of simulation in the construction process and examines the validity and interpretation of simulation results. Chapter thirteen particularly focuses on the Computational Fluid Dynamics (CFD) simulation method used for optimisation and performance assessment of technologies and solutions for sustainable building design and its application through a series of cases studies. People and building performance are intimately linked. A better understanding of occupants’ interaction with the indoor environment is essential to building energy and facilities management. Chapter fourteen focuses on the issue of occupant behaviour; principally, its impact, and the influence of building performance on them. Chapter fifteen explores the discipline of facilities management and the contribution that this emerging profession makes to securing sustainable building performance. The chapter highlights a much greater diversity of opportunities in sustainable building design that extends well into the operational life. Chapter sixteen reviews the concepts of modelling information flows and the use of Building Information Modelling (BIM), describing these techniques and how these aspects of information management can help drive sustainability. An explanation is offered concerning why information management is the key to ‘life-cycle’ thinking in sustainable building and construction. Measurement of building performance and sustainability is a key issue in delivering a sustainable built environment. Chapter seventeen identifies the means by which construction materials can be evaluated with respect to their sustainability. It identifies the key issues that impact the sustainability of construction materials and the methodologies commonly used to assess them. Chapter eighteen focuses on the topics of green building assessment, green building materials, sustainable construction and operation. Commonly-used assessment tools such as BRE Environmental Assessment Method (BREEAM), Leadership in Energy and Environmental Design ( LEED) and others are introduced. Chapter nineteen discusses sustainable procurement which is one of the areas to have naturally emerged from the overall sustainable development agenda. It aims to ensure that current use of resources does not compromise the ability of future generations to meet their own needs. Chapter twenty is a best-practice exemplar - the BRE Innovation Park which features a number of demonstration buildings that have been built to the UK Government’s Code for Sustainable Homes. It showcases the very latest innovative methods of construction, and cutting edge technology for sustainable buildings. In summary, Design and Management of Sustainable Built Environment book is the result of co-operation and dedication of individual chapter authors. We hope readers benefit from gaining a broad interdisciplinary knowledge of design and management in the built environment in the context of sustainability. We believe that the knowledge and insights of our academics and professional colleagues from different institutions and disciplines illuminate a way of delivering sustainable built environment through holistic integrated design and management approaches. Last, but not least, I would like to take this opportunity to thank all the chapter authors for their contribution. I would like to thank David Lim for his assistance in the editorial work and proofreading.
Resumo:
In the UK, architectural design is regulated through a system of design control for the public interest, which aims to secure and promote ‘quality’ in the built environment. Design control is primarily implemented by locally employed planning professionals with political oversight, and independent design review panels, staffed predominantly by design professionals. Design control has a lengthy and complex history, with the concept of ‘design’ offering a range of challenges for a regulatory system of governance. A simultaneously creative and emotive discipline, architectural design is a difficult issue to regulate objectively or consistently, often leading to policy that is regarded highly discretionary and flexible. This makes regulatory outcomes difficult to predict, as approaches undertaken by the ‘agents of control’ can vary according to the individual. The role of the design controller is therefore central, tasked with the responsibility of interpreting design policy and guidance, appraising design quality and passing professional judgment. However, little is really known about what influences the way design controllers approach their task, providing a ‘veil’ over design control, shrouding the basis of their decisions. This research engaged directly with the attitudes and perceptions of design controllers in the UK, lifting this ‘veil’. Using in-depth interviews and Q-Methodology, the thesis explores this hidden element of control, revealing a number of key differences in how controllers approach and implement policy and guidance, conceptualise design quality, and rationalise their evaluations and judgments. The research develops a conceptual framework for agency in design control – this consists of six variables (Regulation; Discretion; Skills; Design Quality; Aesthetics; and Evaluation) and it is suggested that this could act as a ‘heuristic’ instrument for UK controllers, prompting more reflexivity in relation to evaluating their own position, approaches, and attitudes, leading to better practice and increased transparency of control decisions.
Resumo:
The idea of buildings in harmony with nature can be traced back to ancient times. The increasing concerns on sustainability oriented buildings have added new challenges in building architectural design and called for new design responses. Sustainable design integrates and balances the human geometries and the natural ones. As the language of nature, it is, therefore, natural to assume that fractal geometry could play a role in developing new forms of aesthetics and sustainable architectural design. This paper gives a brief description of fractal geometry theory and presents its current status and recent developments through illustrative review of some fractal case studies in architecture design, which provides a bridge between fractal geometry and architecture design.
Resumo:
The world is urbanizing rapidly with more than half of the global population now living in cities. Improving urban environments for the well-being of the increasing number of urban citizens is becoming one of the most important challenges of the 21st century. Even though it is common that city planners have visions of a ’good urban milieu’, those visions are concerning visual aesthetics or practical matters. The qualitative perspective of sound, such as sonic diversity and acoustic ecology are neglected aspects in architectural design. Urban planners and politicians are therefore largely unaware of the importance of sounds for the intrinsic quality of a place. Whenever environmental acoustics is on the agenda, the topic is noise abatement or noise legislation – a quantitative attenuation of sounds. Some architects may involve acoustical aspects in their work but sound design or acoustic design has yet to develop to a distinct discipline and be incorporated in urban planning.My aim was to investigate to what extent the urban soundscape is likely to improve if modern architectural techniques merge with principles of acoustics. This is an important, yet unexplored, research area. My study explores and analyses the acoustical aspects in urban development and includes interviews with practitioners in the field of urban acoustics, situated in New York City. My conclusion is that to achieve a better understanding of the human living conditions in mega-cities, there is a need to include sonic components into the holistic sense of urban development.
Resumo:
This research describes the application of a scientific and technological model of Ergonomics in the design of pre-school furniture. The constant presence of the desk in early education and its influence in the relationship between the user and his educational environment determined the necessity of this project. The pre-school desk was considered as a work station, where the joint aspects of education and child anthropometry substantiate the problem. The review of the Historical application of Ergonomics in the Design of children's products consolidated the importance of this report. The development of ergonomic research, characterised by investigations of the Brazilian child's Anthropometry Data and Biomechanical Features, resulted in dimensional parameters of the user and physical characteristics of the present furniture. These elements, together with a comprehension of activities and needs in the pre-school, were connected with aspects of bibliographical revision to result in a series of recomendations for design. Through the methods of Ergonomic Design, a new proposal for the pre-school desk was developed, denominated Mobipresc 3.6.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Esta pesquisa inicia-se pelo estudo das diferentes maneiras de representação de um projeto arquitetônico: desenhos analógicos e digitais, desenhos naturais e técnicos, desenhos auxiliados por computador, maquetes físicas e modelos digitais. Teve como objetivo analisar a representação gráfica utilizada nas publicações de obras arquitetônicas em mídias impressas especializadas, tendo sido selecionada a Revista Projeto & Design como estudo de caso. Com este estudo foi possível, por meio de bibliometria gráfica, verificar as contribuições das representações na compreensão e leitura dos projetos arquitetônicos, elencando-se e exemplificando-se as tipologias de imagens utilizadas nas últimas décadas, bem como relacionar os resultados com o momento histórico em que foram projetadas ou publicadas.
Resumo:
I Max Bill is an intense giornata of a big fresco. An analysis of the main social, artistic and cultural events throughout the twentieth century is needed in order to trace his career through his masterpieces and architectures. Some of the faces of this hypothetical mural painting are, among others, Le Corbusier, Walter Gropius, Ernesto Nathan Rogers, Kandinskij, Klee, Mondrian, Vatongerloo, Ignazio Silone, while the backcloth is given by artistic avant-gardes, Bauhaus, International Exhibitions, CIAM, war events, reconstruction, Milan Triennali, Venice Biennali, the School of Ulm. Architect, even though more known as painter, sculptor, designer and graphic artist, Max Bill attends the Bauhaus as a student in the years 1927-1929, and from this experience derives the main features of a rational, objective, constructive and non figurative art. His research is devoted to give his art a scientific methodology: each work proceeds from the analysis of a problem to the logical and always verifiable solution of the same problem. By means of composition elements (such as rhythm, seriality, theme and its variation, harmony and dissonance), he faces, with consistent results, themes apparently very distant from each other as the project for the H.f.G. or the design for a font. Mathematics are a constant reference frame as field of certainties, order, objectivity: ‘for Bill mathematics are never confined to a simple function: they represent a climate of spiritual certainties, and also the theme of non attempted in its purest state, objectivity of the sign and of the geometrical place, and at the same time restlessness of the infinity: Limited and Unlimited ’. In almost sixty years of activity, experiencing all artistic fields, Max Bill works, projects, designs, holds conferences and exhibitions in Europe, Asia and Americas, confronting himself with the most influencing personalities of the twentieth century. In such a vast scenery, the need to limit the investigation field combined with the necessity to address and analyse the unpublished and original aspect of Bill’s relations with Italy. The original contribution of the present research regards this particular ‘geographic delimitation’; in particular, beyond the deep cultural exchanges between Bill and a series of Milanese architects, most of all with Rogers, two main projects have been addressed: the realtà nuova at Milan Triennale in 1947, and the Contemporary Art Museum in Florence in 1980. It is important to note that these projects have not been previously investigated, and the former never appears in the sources either. These works, together with the most well-known ones, such as the projects for the VI and IX Triennale, and the Swiss pavilion for the Biennale, add important details to the reference frame of the relations which took place between Zurich and Milan. Most of the occasions for exchanges took part in between the Thirties and the Fifties, years during which Bill underwent a significant period of artistic growth. He meets the Swiss progressive architects and the Paris artists from the Abstraction-Création movement, enters the CIAM, collaborates with Le Corbusier to the third volume of his Complete Works, and in Milan he works and gets confronted with the events related to post-war reconstruction. In these years Bill defines his own working methodology, attaining an artistic maturity in his work. The present research investigates the mentioned time period, despite some necessary exceptions. II The official Max Bill bibliography is naturally wide, including spreading works along with ones more devoted to analytical investigation, mainly written in German and often translated into French and English (Max Bill himself published his works in three languages). Few works have been published in Italian and, excluding the catalogue of the Parma exhibition from 1977, they cannot be considered comprehensive. Many publications are exhibition catalogues, some of which include essays written by Max Bill himself, some others bring Bill’s comments in a educational-pedagogical approach, to accompany the observer towards a full understanding of the composition processes of his art works. Bill also left a great amount of theoretical speculations to encourage a critical reading of his works in the form of books edited or written by him, and essays published in ‘Werk’, magazine of the Swiss Werkbund, and other international reviews, among which Domus and Casabella. These three reviews have been important tools of analysis, since they include tracks of some of Max Bill’s architectural works. The architectural aspect is less investigated than the plastic and pictorial ones in all the main reference manuals on the subject: Benevolo, Tafuri and Dal Co, Frampton, Allenspach consider Max Bill as an artist proceeding in his work from Bauhaus in the Ulm experience . A first filing of his works was published in 2004 in the monographic issue of the Spanish magazine 2G, together with critical essays by Karin Gimmi, Stanislaus von Moos, Arthur Rüegg and Hans Frei, and in ‘Konkrete Architektur?’, again by Hans Frei. Moreover, the monographic essay on the Atelier Haus building by Arthur Rüegg from 1997, and the DPA 17 issue of the Catalonia Polytechnic with contributions of Carlos Martì, Bruno Reichlin and Ton Salvadò, the latter publication concentrating on a few Bill’s themes and architectures. An urge to studying and going in depth in Max Bill’s works was marked in 2008 by the centenary of his birth and by a recent rediscovery of Bill as initiator of the ‘minimalist’ tradition in Swiss architecture. Bill’s heirs are both very active in promoting exhibitions, researching and publishing. Jakob Bill, Max Bill’s son and painter himself, recently published a work on Bill’s experience in Bauhaus, and earlier on he had published an in-depth study on ‘Endless Ribbons’ sculptures. Angela Thomas Schmid, Bill’s wife and art historian, published in end 2008 the first volume of a biography on Max Bill and, together with the film maker Eric Schmid, produced a documentary film which was also presented at the last Locarno Film Festival. Both biography and documentary concentrate on Max Bill’s political involvement, from antifascism and 1968 protest movements to Bill experiences as Zurich Municipality councilman and member of the Swiss Confederation Parliament. In the present research, the bibliography includes also direct sources, such as interviews and original materials in the form of letters correspondence and graphic works together with related essays, kept in the max+binia+jakob bill stiftung archive in Zurich. III The results of the present research are organized into four main chapters, each of them subdivided into four parts. The first chapter concentrates on the research field, reasons, tools and methodologies employed, whereas the second one consists of a short biographical note organized by topics, introducing the subject of the research. The third chapter, which includes unpublished events, traces the historical and cultural frame with particular reference to the relations between Max Bill and the Italian scene, especially Milan and the architects Rogers and Baldessari around the Fifties, searching the themes and the keys for interpretation of Bill’s architectures and investigating the critical debate on the reviews and the plastic survey through sculpture. The fourth and last chapter examines four main architectures chosen on a geographical basis, all devoted to exhibition spaces, investigating Max Bill’s composition process related to the pictorial field. Paintings has surely been easier and faster to investigate and verify than the building field. A doctoral thesis discussed in Lausanne in 1977 investigating Max Bill’s plastic and pictorial works, provided a series of devices which were corrected and adapted for the definition of the interpretation grid for the composition structures of Bill’s main architectures. Four different tools are employed in the investigation of each work: a context analysis related to chapter three results; a specific theoretical essay by Max Bill briefly explaining his main theses, even though not directly linked to the very same work of art considered; the interpretation grid for the composition themes derived from a related pictorial work; the architecture drawing and digital three-dimensional model. The double analysis of the architectural and pictorial fields is functional to underlining the relation among the different elements of the composition process; the two fields, however, cannot be compared and they stay, in Max Bill’s works as in the present research, interdependent though self-sufficient. IV An important aspect of Max Bill production is self-referentiality: talking of Max Bill, also through Max Bill, as a need for coherence instead of a method limitation. Ernesto Nathan Rogers describes Bill as the last humanist, and his horizon is the known world but, as the ‘Concrete Art’ of which he is one of the main representatives, his production justifies itself: Max Bill not only found a method, but he autonomously re-wrote the ‘rules of the game’, derived timeless theoretical principles and verified them through a rich and interdisciplinary artistic production. The most recurrent words in the present research work are synthesis, unity, space and logic. These terms are part of Max Bill’s vocabulary and can be referred to his works. Similarly, graphic settings or analytical schemes in this research text referring to or commenting Bill’s architectural projects were drawn up keeping in mind the concise precision of his architectural design. As for Mies van der Rohe, it has been written that Max Bill took art to ‘zero degree’ reaching in this way a high complexity. His works are a synthesis of art: they conceptually encompass all previous and –considered their developments- most of contemporary pictures. Contents and message are generally explicitly declared in the title or in Bill’s essays on his artistic works and architectural projects: the beneficiary is invited to go through and re-build the process of synthesis generating the shape. In the course of the interview with the Milan artist Getulio Alviani, he tells how he would not write more than a page for an essay on Josef Albers: everything was already evident ‘on the surface’ and any additional sentence would be redundant. Two years after that interview, these pages attempt to decompose and single out the elements and processes connected with some of Max Bill’s works which, for their own origin, already contain all possible explanations and interpretations. The formal reduction in favour of contents maximization is, perhaps, Max Bill’s main lesson.
Resumo:
The experience of void, essential to the production of forms and to make use them, can be considered as the base of the activities that attend to the formative processes. If void and matter constitutes the basic substances of architecture. Their role in the definition of form, the symbolic value and the constructive methods of it defines the quality of the space. This job inquires the character of space in the architecture of Moneo interpreting the meaning of the void in the Basque culture through the reading of the form matrices in the work of Jorge Oteiza and Eduardo Chillida. In the tie with the Basque culture a reading key is characterized by concurring to put in relation some of the theoretical principles expressed by Moneo on the relationship between place and time, in an unique and specific vision of the space. In the analysis of the process that determines the genesis of the architecture of Moneo emerges a trajectory whose direction is constructed on two pivos: on the one hand architecture like instrument of appropriation of the place, gushed from an acquaintance process who leans itself to the reading of the relations that define the place and of the resonances through which measuring it, on the other hand the architecture whose character is able to represent and to extend the time in which he is conceived, through the autonomy that is conferred to them from values. Following the trace characterized from this hypothesis, that is supported on the theories elaborated from Moneo, surveying deepens the reading of the principles that construct the sculptural work of Oteiza and Chillida, features from a search around the topic of the void and to its expression through the form. It is instrumental to the definition of a specific area that concurs to interpret the character of the space subtended to a vision of the place and the time, affine to the sensibility of Moneo and in some way not stranger to its cultural formation. The years of the academic formation, during which Moneo enters in contact with the Basque artistic culture, seem to be an important period in the birth of that knowledge that will leads him to the formulation of theories tied to the relationship between time, place and architecture. The values expressed through the experimental work of Oteiza and Chillida during years '50 are valid bases to the understanding of such relationships. In tracing a profile of the figures of Oteiza and Chillida, without the pretension that it is exhaustive for the reading of the complex historical period in which they are placed, but with the needs to put the work in a context, I want to be evidenced the important role carried out from the two artists from the Basque cultural area within which Moneo moves its first steps. The tie that approaches Moneo to the Basque culture following the personal trajectory of the formative experience interlaces to that one of important figures of the art and the Spanish architecture. One of the more meaningful relationships is born just during the years of his academic formation, from 1958 to the 1961, when he works like student in the professional office of the architect Francisco Sáenz de Oiza, who was teaching architectural design at the ETSAM. In these years many figures of Basque artists alternated at the professional office of Oiza that enjoys the important support of the manufacturer and maecenas Juan Huarte Beaumont, introduced to he from Oteiza. The tie between Huarte and Oteiza is solid and continuous in the years and it realizes in a contribution to many of the initiatives that makes of Oteiza a forwarder of the Basque culture. In the four years of collaboration with Oiza, Moneo has the opportunity to keep in contact with an atmosphere permeated by a constant search in the field of the plastic art and with figures directly connected to such atmosphere. It’s of a period of great intensity as in the production like in the promotion of the Basque art. The collective “Blanco y Negro”, than is held in 1959 at the Galería Darro to Madrid, is only one of the many times of an exhibition of the work of Oteiza and Chillida. The end of the Fifties is a period of international acknowledgment for Chillida that for Oteiza. The decade of the Fifties consecrates the hypotheses of a mythical past of the Basque people through the spread of the studies carried out in the antecedent years. The archaeological discoveries that join to a context already rich of signs of the prehistoric era, consolidate the knowledge of a strong cultural identity. Oteiza, like Chillida and other contemporary artists, believe in a cosmogonist conception belonging to the Basques, connected to their matriarchal mythological past. The void in its meaning of absence, in the Basque culture, thus as in various archaic and oriental religions, is equivalent to the spiritual fullness as essential condition to the revealing of essence. Retracing the archaic origins of the Basque culture emerges the deep meaning that the void assumes as key element in the religious interpretation of the passage from the life to the death. The symbology becomes rich of meaningful characters who derive from the fact that it is a chthonic cult. A representation of earth like place in which divine manifest itself but also like connection between divine and human, and this manipulation of the matter of which the earth it is composed is the tangible projection of the continuous search of the man towards God. The search of equilibrium between empty and full, that characterizes also the development of the form in architecture, in the Basque culture assumes therefore a peculiar value that returns like constant in great part of the plastic expressions, than in this context seem to be privileged regarding the other expressive forms. Oteiza and Chillida develop two original points of view in the representation of the void through the form. Both use of rigorous systems of rules sensitive to the physics principles and the characters of the matter. The last aim of the Oteiza’s construction is the void like limit of the knowledge, like border between known and unknown. It doesn’t means to reduce the sculptural object to an only allusive dimension because the void as physical and spiritual power is an active void, that possesses that value able to reveal the being through the trace of un-being. The void in its transcendental manifestation acts at the same time from universal and from particular, like in the atomic structure of the matter, in which on one side it constitutes the inner structure of every atom and on the other one it is necessary condition to the interaction between all the atoms. The void can be seen therefore as the action field that concurs the relations between the forms but is also the necessary condition to the same existence of the form. In the construction of Chillida the void represents that counterpart structuring the matter, inborn in it, the element in absence of which wouldn’t be variations neither distinctive characters to define the phenomenal variety of the world. The physics laws become the subject of the sculptural representation, the void are the instrument that concurs to catch up the equilibrium. Chillida dedicate himself to experience the space through the senses, to perceive of the qualities, to tell the physics laws which forge the matter in the form and the form arranges the places. From the artistic experience of the two sculptors they can be transposed, to the architectonic work of Moneo, those matrices on which they have constructed their original lyric expressions, where the void is absolute protagonist. An ambit is defined thus within which the matrices form them drafts from the work of Oteiza and Chillida can be traced in the definition of the process of birth and construction of the architecture of Moneo, but also in the relation that the architecture establishes with the place and in the time. The void becomes instrument to read the space constructed in its relationships that determine the proportions, rhythms, and relations. In this way the void concurs to interpret the architectonic space and to read the value of it, the quality of the spaces constructing it. This because it’s like an instrument of the composition, whose role is to maintain to the separation between the elements putting in evidence the field of relations. The void is that instrument that serves to characterize the elements that are with in the composition, related between each other, but distinguished. The meaning of the void therefore pushes the interpretation of the architectonic composition on the game of the relations between the elements that, independent and distinguished, strengthen themselves in their identity. On the one hand if void, as measurable reality, concurs all the dimensional changes quantifying the relationships between the parts, on the other hand its dialectic connotation concurs to search the equilibrium that regulated such variations. Equilibrium that therefore does not represent an obtained state applying criteria setting up from arbitrary rules but that depends from the intimate nature of the matter and its embodiment in the form. The production of a form, or a formal system that can be finalized to the construction of a building, is indissolubly tied to the technique that is based on the acquaintance of the formal vocation of the matter, and what it also can representing, meaning, expresses itself in characterizing the site. For Moneo, in fact, the space defined from the architecture is above all a site, because the essence of the site is based on the construction. When Moneo speaks about “birth of the idea of plan” like essential moment in the construction process of the architecture, it refers to a process whose complexity cannot be born other than from a deepened acquaintance of the site that leads to the comprehension of its specificity. Specificity arise from the infinite sum of relations, than for Moneo is the story of the oneness of a site, of its history, of the cultural identity and of the dimensional characters that that they are tied to it beyond that to the physical characteristics of the site. This vision is leaned to a solid made physical structure of perceptions, of distances, guideline and references that then make that the process is first of all acquaintance, appropriation. Appropriation that however does not happen for directed consequence because does not exist a relationship of cause and effect between place and architecture, thus as an univocal and exclusive way does not exist to arrive to a representation of an idea. An approach that, through the construction of the place where the architecture acquires its being, searches an expression of its sense of the truth. The proposal of a distinction for areas like space, matter, spirit and time, answering to the issues that scan the topics of the planning search of Moneo, concurs a more immediate reading of the systems subtended to the composition principles, through which is related the recurrent architectonic elements in its planning dictionary. From the dialectic between the opposites that is expressed in the duality of the form, through the definition of a complex element that can mediate between inside and outside as a real system of exchange, Moneo experiences the form development of the building deepening the relations that the volume establishes in the site. From time to time the invention of a system used to answer to the needs of the program and to resolve the dual character of the construction in an only gesture, involves a deep acquaintance of the professional practice. The technical aspect is the essential support to which the construction of the system is indissolubly tied. What therefore arouses interest is the search of the criteria and the way to construct that can reveal essential aspects of the being of the things. The constructive process demands, in fact, the acquaintance of the formative properties of the matter. Property from which the reflections gush on the relations that can be born around the architecture through the resonance produced from the forms. The void, in fact, through the form is in a position to constructing the site establishing a reciprocity relation. A reciprocity that is determined in the game between empty and full and of the forms between each other, regarding around, but also with regard to the subjective experience. The construction of a background used to amplify what is arranged on it and to clearly show the relations between the parts and at the same time able to tie itself with around opening the space of the vision, is a system that in the architecture of Moneo has one of its more effective applications in the use of the platform used like architectonic element. The spiritual force of this architectonic gesture is in the ability to define a place whose projecting intention is perceived and shared with who experience and has lived like some instrument to contact the cosmic forces, in a delicate process that lead to the equilibrium with them, but in completely physical way. The principles subtended to the construction of the form taken from the study of the void and the relations that it concurs, lead to express human values in the construction of the site. The validity of these principles however is tested from the time. The time is what Moneo considers as filter that every architecture is subordinate to and the survival of architecture, or any of its formal characters, reveals them the validity of the principles that have determined it. It manifests thus, in the tie between the spatial and spiritual dimension, between the material and the worldly dimension, the state of necessity that leads, in the construction of the architecture, to establish a contact with the forces of the universe and the intimate world, through a process that translate that necessity in elaboration of a formal system.
Resumo:
Currently, observations of space debris are primarily performed with ground-based sensors. These sensors have a detection limit at some centimetres diameter for objects in Low Earth Orbit (LEO) and at about two decimetres diameter for objects in Geostationary Orbit (GEO). The few space-based debris observations stem mainly from in-situ measurements and from the analysis of returned spacecraft surfaces. Both provide information about mostly sub-millimetre-sized debris particles. As a consequence the population of centimetre- and millimetre-sized debris objects remains poorly understood. The development, validation and improvement of debris reference models drive the need for measurements covering the whole diameter range. In 2003 the European Space Agency (ESA) initiated a study entitled “Space-Based Optical Observation of Space Debris”. The first tasks of the study were to define user requirements and to develop an observation strategy for a space-based instrument capable of observing uncatalogued millimetre-sized debris objects. Only passive optical observations were considered, focussing on mission concepts for the LEO, and GEO regions respectively. Starting from the requirements and the observation strategy, an instrument system architecture and an associated operations concept have been elaborated. The instrument system architecture covers the telescope, camera and onboard processing electronics. The proposed telescope is a folded Schmidt design, characterised by a 20 cm aperture and a large field of view of 6°. The camera design is based on the use of either a frame-transfer charge coupled device (CCD), or on a cooled hybrid sensor with fast read-out. A four megapixel sensor is foreseen. For the onboard processing, a scalable architecture has been selected. Performance simulations have been executed for the system as designed, focussing on the orbit determination of observed debris particles, and on the analysis of the object detection algorithms. In this paper we present some of the main results of the study. A short overview of the user requirements and observation strategy is given. The architectural design of the instrument is discussed, and the main tradeoffs are outlined. An insight into the results of the performance simulations is provided.
Resumo:
In this talk we address a proposal concerning a methodology for extracting universal, domain neutral, architectural design patterns from the analysis of biological cognition. This will render a set of design principles and design patterns oriented towards the construction of better machines. Bio- inspiration cannot be a one step process if we we are going to to build robust, dependable autonomous agents; we must build solid theories first, departing from natural systems, and supporting our designs of artificial ones.
Resumo:
Se presenta la tesis doctoral, titulada ‘TRANS Arquitectura. Imaginación, Invención e individuación del objeto tecnico arquitectónico. Transferencia tecnológica desde la Industria del Transporte al Proyecto de Arquitectura [1900-1973]'’, que aborda la relación entre la Arquitectura y el Objeto Técnico durante la Modernidad.1 La temática de la tesis gravita en torno a la cultura técnica, la cultura material y la historia de la Tecnología del siglo XX. Hipótesis Se sostiene aquí la existencia de unas arquitecturas que se definen como Objetos Técnicos. Para demostrarlo se estudia si éstas comparten las mismas propiedades ontológicas de los objetos técnicos. Industria y Arquitectura La historia de la Arquitectura Moderna es la historia de la Industria Moderna y sus instalaciones industriales, sus productos y artefactos o sus procedimientos y procesos productivos. Fábricas, talleres, acerías, astilleros, minas, refinerías, laboratorios, automóviles, veleros, aviones, dirigibles, transbordadores, estaciones espaciales, electrodomésticos, ordenadores personales, teléfonos móviles, motores, baterías, turbinas, aparejos, cascos, chassis, carrocerías, fuselajes, composites, materiales sintéticos, la cadena de montaje, la fabricación modular, la cadena de suministros, la ingeniería de procesos, la obsolescencia programada… Todos estos objetos técnicos evolucionan constantemente gracias al inconformismo de la imaginación humana, y como intermediarios que son, cambian nuestra manera de relacionarnos con el mundo. La Arquitectura, al igual que otros objetos técnicos, media entre el hombre y el mundo. Con el objetivo de reducir el ámbito tan vasto de la investigación, éste se ha filtrado a partir de varios parámetros y cualidades de la Industria, estableciendo un marco temporal, vinculado con un determinado modo de hacer, basado en la ciencia. El inicio del desarrollo industrial basado en el conocimiento científico se da desde la Segunda Revolución Industrial, por consenso en el último tercio del siglo XIX. Este marco centra el foco de la tesis en el proceso de industrialización experimentado por la Arquitectura desde entonces, y durante aproximadamente un siglo, recorriendo la Modernidad durante los 75 primeros años del siglo XX. Durante este tiempo, los arquitectos han realizado transferencias de imágenes, técnicas, procesos y materiales desde la Industria, que ha servido como fuente de conocimiento para la Arquitectura, y ha evolucionado como disciplina. Para poder abordar más razonablemente un periodo tan amplio, se ha elegido el sector industrial del transporte, que históricamente ha sido, no sólo fuente de inspiración para los Arquitectos, sino también fuente de transferencia tecnológica para la Arquitectura. Conjuntos técnicos como los astilleros, fábricas de automóviles o hangares de aviones, individuos técnicos como barcos, coches o aviones, y elementos técnicos como las estructuras que les dan forma y soporte, son todos ellos objetos técnicos que comparten propiedades con las arquitecturas que aquí se presentan. La puesta en marcha de la cadena móvil de montaje en 1913, se toma instrumentalmente como primer foco temporal desde el que relatar la evolución de numerosos objetos técnicos en la Primera Era de la Máquina; un segundo foco se sitúa en 19582, año de la creación de la Agencia Espacial norteamericana (NASA), que sirve de referencia para situar la Segunda Era de la Máquina. La mayoría de los objetos técnicos arquitectónicos utilizados para probar la hipótesis planteada, gravitan en torno a estas fechas, con un rango de más menos 25 años, con una clara intención de sincronizar el tiempo de la acción y el tiempo del pensamiento. Arquitectura y objeto técnico Los objetos técnicos han estado siempre relacionados con la Arquitectura. En el pasado, el mismo técnico que proyectaba y supervisaba una estructura, se ocupaba de inventar los ingenios y máquinas para llevarlas a cabo. Los maestros de obra, eran verdaderos ‘agentes de transferencia tecnológica’ de la Industria y su conocimiento relacionaba técnicas de fabricación de diferentes objetos técnicos. Brunelleschi inventó varia grúas para construir la cúpula de Santa Maria dei Fiori (ca.1461), seguramente inspirado por la reedición del tratado de Vitruvio, De Architectura (15 A.C.), cuyo último capítulo estaba dedicado a las máquinas de la arquitectura clásica romana, y citaba a inventores como Archimedes. El arquitecto florentino fue el primero en patentar un invento en 1421: una embarcación anfibia que serviría para transportar mármol de Carrara por el río Arno, para su obra en Florencia. J. Paxton. Crystal Palace. London 1851. Viga-columna. Robert McCormick. Cosechadora 1831. 2ª patente, 1845. La Segunda Revolución Industrial nos dejó un primitivo ejemplo moderno de la relación entre la Arquitectura y el objeto técnico. El mayor edificio industrializado hasta la fecha, el Crystal Palace de Londres, obra de Joseph Paxton, fue montado en Londres con motivo de la Gran Exposición sobre la Industria Mundial de 1851, y siempre estará asociado a la cosechadora McCormick, merecedora del Gran Premio del Jurado. De ambos objetos técnicos, podrían destacarse características similares, como su origen industrial, y ser el complejo resultado de un ensamblaje simple de elementos técnicos. Desde la entonces, el desarrollo tecnológico ha experimentado una aceleración continuada, dando lugar a una creciente especialización y separación del conocimiento sobre las técnicas antes naturalmente unidas. Este proceso se ha dado a expensas del conocimiento integrador y en detrimento de la promiscuidad entre la Industria y la Arquitectura. Este es, sin lugar a dudas, un signo consustancial a nuestro tiempo, que provoca un natural interés de los arquitectos y otros tecnólogos, por las transferencias, trans e inter-disciplinareidades que tratan de re-establecer los canales de relación entre los diferentes campos del conocimiento. La emergencia de objetos técnicos como los vehículos modernos a principios del siglo XX (el automóvil, el trasatlántico, el dirigible o el aeroplano) está relacionada directamente con la Arquitectura de la Primera Era de la Máquina. La fascinación de los arquitectos modernos por aquellas nuevas estructuras habitables, se ha mantenido durante más de un siglo, con diferente intensidad y prestando atención a unos objetos técnicos u otros, oscilando entre el dominio del valor simbólico de los vehículos como objetosimágenes, durante el periodo heroico de la Primera Era de la Máquina, y la mirada más inquisitiva durante la Segunda, que perseguía un conocimiento más profundo de la organización de los mismos y del sistema técnico en el que estaban incluidos. La relación homóloga que existe entre arquitecturas y vehículos, por su condición de estructuras habitables, es algo de sobra conocido desde que Le Corbusier utilizara aquellas imágenes de barcos, coches y aviones para ilustrar su manifiesto Vers une architecture, de 1923. Los vehículos modernos han sido los medios con los que transmitir los conceptos que ansiaban transformar las propiedades tradicionales de la Arquitectura, relativas a su factura, su habitabilidad, su duración, su funcionalidad o su estética. Destaca particularmente el caso del automóvil en las décadas de los años 30 y 50, y los vehículos del programa espacial en las décadas de los 60 y 70. El conocimiento y la documentación previa de estos hechos, fueron un buen indicio para identificar y confirmar que el sector industrial del transporte, era un especialmente trascendente y fértil proveedor de casos de transferencia tecnológica para la Arquitectura. La tradición Moderna inaugurada por Le Corbusier en los años 20, ha sido mantenida y defendida por una multitud de arquitectos modernos como Albert Frey, Richard Neutra, Ralph Soriano, Charles Eames o Craig Ellwood, cuyo trabajo, animado por el legado de anteriores tecnólogos como Bucky Fuller o Jean Prouvé, fue fundamental y referencia obligada para la siguiente generación de arquitectos como Cedric Price, Archigram, Norman Foster, Richard Rogers, Renzo Piano, Jean Kaplicky o Richard Horden, entre otros. Todos ellos han contribuido a engrosar el imaginario del objeto técnico, aportando sus obras arquitectónicas. Estos arquitectos que aparecen repetidamente en el discurrir de la tesis, pertenecen a un mismo linaje, y son agrupados según una estructura ‘genealógica’, que se ha denominado ‘Estirpe Técnica’. Unidos por intereses comunes y similares enfoques o actitudes ante el proyecto de arquitectura, entendida como objeto Técnico, han operado mediante la práctica de la transferencia tecnológica, sin limitarse a las técnicas compositivas propias de la disciplina arquitectónica. Durante la investigación, se ha recopilado una selección de menciones explícitas -hechas por arquitectos- sobre otros objetos técnicos para referirse a la Arquitectura, mostrando las constantes y las variaciones de sus intereses a lo largo del siglo, lo que nos ha llevado a conclusiones como por ejemplo, que los conjuntos técnicos (fábricas de zepelines, aviones, automóviles o trasatlánticos) eran tomados por los arquitectos de la primera Modernidad, como un modelo imaginario, formal y compositivo, mientras que los de la Segunda Era de la Máquina los tomaban como modelo espacial y organizativo para la arquitectura. La mencionada estirpe de tecnólogos incluye líneas de descendencia conocidas, como: EiffelSuchovBehrens GropiusMiesLeCorbusierLodsProuve, en la Europa continental, o una rama británica como: LoudonPaxtonWilliamsStirlingGowan SmithsonsPriceArchigramFosterRogersPiano KaplickyHorden. También podemos encontrar conexiones intercontinentales como Fuller EamesRudolphFosterRogers, o ramificaciones menos previsibles como: LeRicolaisKahn PianoKaplicky, o LeCorbusierFreyLacaton Vassal… Seguramente muchos más merecerían incluirse en esta lista, y de hecho, la tesis asume la imposibilidad de incluirlo todo (por motivos prácticos) aunque contempla la posibilidad de ser ampliada en un futuro. Con lo aquí incluido, se pretende mostrar la continuidad en los enfoques, planteamientos y técnicas de proyectos aplicadas, de los que podemos deducir algunas conclusiones, como por ejemplo, que en los periodos inmediatamente posteriores a las dos Guerras Mundiales, aumentó la intensidad de aportaciones de nuevas imágenes de vehículos, al imaginario del objeto técnico utilizado por los arquitectos, a través de publicaciones y exposiciones. Hoy, cien años después de que Ford pusiera en marcha la cadena móvil de montaje, aún encontramos viva esta tradición en las palabras de un arquitecto, Richard Horden, cuyo trabajo porta consigo –como la información embebida en los elementos técnicos- toda una cultura técnica de una tradición moderna. Horden representa uno de los exponentes de la que he denominado estirpe de tecnólogos. Es por ello que he querido concluir la tesis con una entrevista, realizada en Mayo de 2015, en su estudio de Berkeley Square en Londres (ver Apéndices). Guías Para el desarrollo de la presente tesis, se ha tomado, como principal obra de referencia, otra tesis, titulada El modo de existencia de los objetos técnicos, leída y publicada en 1958 por el filósofo francés Gilbert Simondon [1924-89], dedicada a la ontología del objeto técnico. Esta obra enmarca el enfoque intelectual de la tesis, que entronca con la fenomenología, para movilizar una visión particular de la Arquitectura, a la que sirve como modelo de análisis ontológico para estudiar sus procesos de génesis, invención e individuación. Para el desarrollo de éstos, se ha utilizado como complemento bibliográfico, otra obra del mismo autor, titulada Imaginación e invención 1965-66. En cuanto a las fuentes historiográficas disciplinares, se ha elegido utilizar a Reyner P. Banham [1922-1988] y a Martin E. Pawley [1938-2008] como guías a través de la arquitectura del siglo XX. Sus crónicas sobre la Primera y Segunda Era de la Máquina3 y su obra crítica, han servido como índices desde los que reconstruir el imaginario del objeto técnico moderno, y del que aprovisionarse de proyectos y obras de Arquitectura como casos de estudio para la tesis. Estas obras han servido además como índices de otra bibliografía, que ha sido complementaria a la de éstos. Objetivos de la Tesis El principal objetivo de la tesis es demostrar la hipótesis: si una obra de arquitectura puede ser considerada un objeto técnico y bajo qué condiciones, construyendo un criterio que permita reconocer cuándo una obra de Arquitectura responde a la definición de objeto técnico. Otro objetivo es demostrar la importancia y potencia de la Transferencia tecnológica en el proceso evolutivo de la Arquitectura, y para ello se presentan ejemplos de una metodología de proyecto por ensamblaje, que Martin Pawley denominaba ‘Design by Assembly’. También es un objetivo el de reconstruir un Atlas del Imaginario del objeto técnico moderno, con el fin de conocer mejor las causas, razones y finalidades que llevaron a los arquitectos modernos a perseguir una arquitectura como objeto técnico. Este Atlas permite relacionar panópticamente los distintos objetos técnicos entre sí, revelando la verdadera importancia y trascendencia de aquéllos y las arquitecturas con las que se relacionan. En él, las arquitecturas vuelven a situarse en el contexto más extenso y complejo de la industria y la historia de la tecnología, al que siempre pertenecieron. De este modo, éstas son capaces de desvelar todo el conocimiento -en forma de información- que portan en su propio código ‘genético’, desplegando capítulos completos de cultura tecnológica, tan antigua como la Humanidad y en constante y creciente evolución. Estructura de la tesis Tras una Introducción en la que se presentan algunos de los conceptos principales que se instrumentalizan en la tesis sobre la ontología Simondoniana del objeto técnico y sobre la transferencia tecnológica aplicada al proyecto de Arquitectura, el texto principal de la tesis consta de tres partes: La primera se dedica a la Imaginación, una segunda parte a la Invención y una tercera a Individuación o evolución del objeto técnico. Se termina con una Discusión de la tesis y un apartado de Conclusiones. En la Introducción al objeto técnico, éste se define ontológicamente y se distinguen sus diferentes categorías (conjuntos técnicos, individuos técnicos y elementos técnicos). Se explica el proceso de génesis del objeto técnico y sus fases de imaginación, invención e individuación. También se presentan los conceptos de transducción, tecnicidad y sistema técnico, fundamentales para entender el concepto de transferencia tecnológica que se desarrollará después. La concretización, explica el modo particular de individuación y evolución de los objetos técnicos, un proceso por el que las diferentes partes de un objeto técnico, se integran y tienden hacia la propia convergencia. Aquí se comprueba la efectividad del concepto simondoniano de Transducción, como señal o información transmitida y transformada, y se relaciona con la Transferencia Tecnológica - un proceso sinergético, por el que un sector industrial se beneficia del desarrollo de otro sector- a la que se han referido explícitamente arquitectos e historiadores para explicar sus obras, durante la Segunda Era de la Máquina, y que es determinante para el desarrollo de la Industria. La transferencia tecnológica sería la transmisión del conjunto de conocimientos sobre la técnica, que incluyen su esfera fáctica, pero también la esfera sensible de la experiencia. En su aplicación a la arquitectura, las transferencias se han clasificado según tres tipos: Eidéticas, Tectónicas, Orgánicas. En la primera parte dedicada a la Imaginación del objeto técnico arquitectónico se realiza una reconstrucción ‘arqueológica’ –y parcial- del imaginario del objeto técnico moderno, con la intención de conocer mejor su génesis y la relación con otros objetos técnicos. Las fuentes de ese imaginario se buscan en las instalaciones de la Industria de principios de siglo XX, en particular en las fábricas de vehículos, con la finalidad de comprobar hasta qué punto, esos objetos técnicos fueron importantes para imaginar la Arquitectura moderna. La reconstrucción se continúa hasta la Segunda Era de la Máquina, cuando una nueva mirada más inquisitiva y precisa, se dirige a otras fábricas, vehículos y componentes, interesándose por sus cualidades materiales y organizativas. Transferencias Eidéticas, que operan desde un conocimiento intuitivo y son útiles para transmitir información sobre la esencia de un objeto técnico que sirve de fuente. Conceptos abstractos se transmiten por medio de las imágenes—objeto, para producir una transformación en su equivalente arquitectónico. Fruto de la investigación, se han detectado un grupo de conceptos que han sido objeto de transferencias tecnológicas de naturaleza eidética, provenientes del imaginario del objeto técnico moderno: FABRICADO, HABITABLE, FUNCIONAL, EFICIENTE, OBSOLESCENTE y BELLO. En la segunda parte dedicada a la Invención del objeto técnico arquitectónico, las transferencias también pueden ser Tectónicas, cuando lo que se transmite es una técnica constructiva o estructural aplicada mediante MATERIALES artificiales (como los metales, los composites como el ferrocemento, y el plywood, o las aleaciones como el aluminio) o mediante el ensamblaje de ESTRUCTURAS o partes componentes de otro objeto técnico, (como cascos, fuselajes, carrocerías o aparejos) y tiene como resultado la invención de un nuevo objeto técnico arquitectónico. En la tercera parte dedicada a la individuación, se abordan las transferencias ORGÁNICAS, lo que se transfiere es una técnica organizativa, aplicada a través de PROCEDIMIENTOS que definen la actividad del arquitecto como tecnólogo e inventor de objetos técnicos. Estos procedimientos tienen un efecto transformador en tres instituciones tradicionales para la Arquitectura: la Escuela, el Estudio y la Obra, y sus resultados se resumen en nuevos modelos de organización de la Educación de la Arquitectura, con la aparición de los Talleres de proyectos; nuevos modelos de organización del ejercicio de arquitecto: la Oficina técnica; nuevos modelos de organización del espacio, basados en la organización espacial de la Industria, que da lugar a patrones o Matrices espaciales; un nuevo modelo de organización del proyecto, que utiliza las herramientas gráficas de la industria y el ensamblaje como metodología; y un nuevo modelo de producción arquitectónica, basado en la Industrialización. Tras explicar los conceptos y la génesis del ensamblaje y el montaje, se presenta el proyecto por ensamblaje (Design by assembly) como un método que promueve la invención arquitectónica. Se demuestra utilizando algunos casos analizados en la tesis, en los que se ha realizado alguna transferencia conceptual, constructiva u organizativa. Tras analizar las arquitecturas estudiadas en la tesis, se ha utilizado el método genético propuesto por Simondon para comprender cada evolución particular, reconstruyendo las líneas genealógicas hasta sus ancestros, e identificando una serie de linajes genéticos, que corresponderían con los conjuntos técnicos estudiados en la tesis: el astillero, la fábrica de coches, y la fábrica de aeronaves: los Ancestros de la Modernidad. Los sistemas de organización espacial de estos conjuntos técnicos, están directamente relacionados con el objeto técnico que se produce en él. A partir de ellos se definen una serie de matrices operativas (MILL, SHOP, SHED), que sirven para hacer una taxonomía del objeto técnico arquitectónico. Esto se ejemplifica con algunos proyectos de Norman Foster, Richard Rogers, Renzo Piano, Nicholas Grimshaw, Jean Kaplicky y Richard Horden. Tesis: Comprobación de la hipótesis Simondon definía ontológicamente el Objeto técnico como aquello de lo que existe génesis y que desarrolla una tendencia hacia la solidaridad y unidad. Para que una Arquitectura pueda ser reconocida como un Objeto técnico, se deben dar una serie de condiciones, en las sucesivas fases que intervienen en su modo de existencia: Imaginación. Estas arquitecturas remiten a un imaginario protagonizado por imágenes-objeto de otros objetos técnicos (conjuntos técnicos, individuos técnicos y elementos técnicos). Esas imágenes-objeto vehiculizan una transferencia eidética de los objetos técnicos que simbolizan. Invención. Estas arquitecturas son el resultado de transferencias tectónicas, que se producen durante el proceso de proyecto, mediante el ensamblaje de materiales, componentes o procedimientos, utilizados en la industria para la producción de otros objetos técnicos. Individuación. Estas arquitecturas evolucionan y se individualizan por concretización, un proceso por el que los objetos técnicos se organizan para seguir su tendencia hacia la integración de sus partes, con el fin de alcanzar la convergencia de funciones en una única estructura. Esta integración tiende hacia la naturalización del objeto técnico, mediante la inclusión simbiótica de sus medios naturales asociados. En este caso, veremos cómo se ha producido transferencias orgánicas, o lo que es lo mismo, cómo los objetos técnicos –en el nivel de los conjuntos técnicos- se han tomado como modelo de organización por la arquitectura. Tras comprobar que de ellas existe una génesis, que evoluciona por las fases de imaginación e invención y concretización, se analiza su imaginario, su materialidad, sus estructuras y su organización, con el fin de detectar patrones y principios organizativos comunes a otros objetos técnicos. Interés de la tesis Desde el comienzo del nuevo siglo, diversos autores han demostrado un renovado interés por definir qué es el proyecto, qué lo constituye para qué sirve. Las aproximaciones al tema provienen de la filosofía analítica (Galle, 2008) o de la filosofía de la tecnología (Verbeek, 2005; Vermaas, 2009) y a menudo versan sobre la relación entre diseño y la cultura material (Dorschel 2003, Boradkar 2010 o Preston 2012). Es importante indicar el reciente y también creciente interés suscitado por la obra del filósofo francés, Gilbert Simondon [1924-1989], reconocida por su importante contribución a la filosofía de la técnica y la fenomenología, y por la influencia en el pensamiento de filósofos como Gilles Deleuze, autor presente en multitud de tesis doctorales e investigaciones teóricas llevadas a cabo en las principales escuelas de Arquitectura de todo el mundo desde los años 90 hasta el presente. La reedición y traducción de la obra de Simondon (ing. 1980, esp. 2008) ha recibido la atención de filósofos actuales como Paolo Virno, Bruno Latour o Bernard Stiegler, que siguen recurriendo a su estudio y análisis para avanzar en su pensamiento, estando por tanto presente en el debate contemporáneo sobre la técnica. Tras su reciente traducción al español, el pensamiento de Simondon ha despertado un gran interés en América Latina, como demuestra la organización de varios congresos y simposios, así como la proliferación de publicaciones en torno a su obra y pensamiento. Las futuras traducciones del resto de sus principales obras, asegurarán una introducción cada vez mayor en la comunidad académica. Se ha procurado presentar una mirada alternativa de la Historia de la Arquitectura Moderna, utilizando como guía a un cronista como Reyner Banham. La Era de la Máquina se ha cruzado con la Mecanología y el “vitalismo técnico” de Simondon, obteniendo como resultado una interpretación fresca, renovada y optimista de algunas de las más importantes obras de Arquitectura del siglo XX, que seguro contribuirán al desarrollo de la del siglo XXI, inmerso ya en el cambio de paradigma hacia la sostenibilidad y la ecología. ABSTRACT 'TRANS architecture. Imagination, invention and technical individuation of the architectural technical object. Technology transfer from the Transport Industry to Architectural Design [1900- 1973]' is a thesis dealing with the relationship between Architecture and the Technical Object during Modernity5. The theme of the thesis revolves around the technical culture, material culture and the history of twentieth-century technology. Hypothesis Held here is the existence of some architectures defined as technical objects. A study has been developed to prove if those architectures share the ontological properties of a technical object. Industry and Architecture The history of Modern Architecture is also the history of modern industry and its facilities, its products and devices, its procedures and production processes. Factories, workshops, steel mills, shipyards, mines, refineries, laboratories, cars, yachts, airplanes, airships, shuttles, space stations, home appliances, personal computers, mobile phones, motors, batteries, turbines, rigs, hulls, chassis, bodies, fuselages , composites and synthetic materials, the assembly line, modular manufacturing, the supply chain, process engineering, the planned obsolescence ... All these technical objects are constantly evolving thanks to the inconsistency of the human imagination and, as our intermediates, keep changing our way of relating and being in the world. Architecture, alike other technical objects, mediates between man and the World. In order to frame the vast field of the research, it has been filtered according to various parameters and qualities of Industry, establishing also a time frame which is related to a particular science-based way of making. The start of an industrial development, based on scientific knowledge is given from the Second Industrial Revolution -by consensus on the last third of the nineteenth century. This frame puts the focus of the thesis in the process of industrialization experienced by the Architecture of at least one century, and tours through Modernity during the first 75 years of the twenieth century. During this time, architects have made transfers of images, techniques, processes and materials from Industry, serving as a source of knowledge and thus allowing Architecture to evolve as a discipline. To reasonably address the enormous scope of the thesis, the industrial sector of transportation has ben chosen. It is not only a historical source of inspiration for architects, but also a traditional source of technology transfer for Modern Architecture. Technical sets such as shipyards, automobile factories or aircraft hangars, technical individuals as boats, cars or planes, and technical elements like the structures shaping and supporting them, are all technical objects which share properties with the architectures here presented. The launch of the moving assembly line in 1913, is instrumentally taken as a first time focus, from which to describe the evolution of many technical objects in the First Machine Age; a second focus could be found in 19586, year of the creation of the North American Space Agency (NASA), serving as a reference to the Second Machine Age. Most architectural technical objects used to test the hypothesis, gravitate around this second focus, in a range of plus or minus 25 years, with a clear intention to synchronize the time for action and time of thought. Architecture and Technical Object Technical objects have always been related to Architecture. In the past, the same technician who planned and oversaw a building structure, invented the devices and machines to carry them out. The foremen were the true 'technology transfer agents' from Industry. Their knowledge naturally related different manufacturing techniques to make diverse technical objects. Brunelleschi invented various cranes to build the dome of Santa Maria dei Fiori in Florence (ca.1461). Probably inspired by the reedition of Vitruvius’ treaty De Architectura (15 BC), whose last chapter was dedicated to the machines of classical Roman architecture and quoted inventors as Archimedes, the florentine architect was the first to patent an invention in 1421: an amphibious craft serving as a means of transportation for Carrara marble along the Arno river. At the daw of the Second Industrial Revolution, whose development was based on the scientific knowledge, we find a primitive modern example of the relationship between Architecture and a Technical Object: The Crystal Palace, built in London for the Great Exhibition of 1851 World Industry and designed by Joseph Paxton, was the largest to date industrialized building, and it will be always associated with the McCormick Reaper, worthy of the Grand Jury’s Prize. Similar characteristics could be emphasized of both technical objects, such as their industrial origin and for being be the complex result of a simple assembly of technical elements. Since then, technological development has experienced a continued acceleration, resulting in an increasing specialization and separation of knowledge about techniques which were naturally attached in the past. This process has happened at the expense of an integrative knowledge and against promiscuity between Industry and Architecture. This is, undoubtedly, an inherent sign of our time, which causes the natural and interest of architects and other technicians about transfers, trans-disciplinarity and inter-disciplinarity, as a reaction to reestablish channels of relationships between these different fields of knowledge. The emergence of technical objects as modern vehicles in the early twentieth century (the car, the Ocean liner, the airship or the airplane) is directly related to the Architecture of the First Machine Age. Modern architects’ fascination for those new ‘inhabitable’ structures has been maintained for over a century, with different intensity and paying attention to one and other technical objets, ranging from the domain of the symbolic value of the vehicles as objectsimages, during heroic period of the First Machine Age, to the more inquisitive glance characterizing the Second Machine Age, which sought a deeper understanding of the organization of such objects and the technical system to which they belonged. The periods immediately following both World Wars, showed a concentrated effort to bring new images of vehicles to the imaginary of architects, by means of publications and exhibitions. The homologous relationship between architectures and vehicles, in their capacity as living structures, is something well known since Le Corbusier used the images of cars, boats and airplanes to illustrate his manifesto, Towards an architecture in 1923. Modern vehicles have been the means by which to convey the concepts eager to transform the traditional attributes of Architecture: those relating to its manufacture, habitability, duration, functionality or aesthetics. The automobile stands out during the 30s and 50s, and the new vehicles of the Space Program satnd in the 60s and 70s. The prior knowledge and documentation of these events were a good indication to identify the industrial sector of Transportation as one of especial importance and as a fertile provider of technology transfer cases for Architecture. The Modern tradition, inaugurated by Le Corbusier in the 20s, has been maintained and defended by a host of modern architects like Albert Frey, Richard Neutra, Ralph Soriano, Charles Eames and Craig Ellwood, whose work - inspired by the legacy of previous technologists as Bucky Fuller or Jean Prouvé- was fundamental and a mandatory reference for the next generation of architects like Cedric Price, Archigram, Norman Foster, Richard Rogers, Renzo Piano, Jean and Richard Horden Kaplicky, among others. They have all contributed to increase the imaginary of the technical object, adding to it their architectural works. In the passage of the thesis, we repeatedly find a number of architects, who have been grouped according to a 'genealogical' structure, which has been called 'Technical Lineage'. Gathered by common interests and similar views or attitudes to the architectural design, understood as a technical object, they have operated through the practice of technology transfer, without limiting itself to specific compositional techniques of the architectural discipline. During the investigation, a selection of explicit references made by those architects, about other technical objects referring to their Architecture, has been compiled, showing constants and variations in their interests throughout the century, which has led to conclusions such as, having technicians sets (zeppelins factories, airships factories, car factories and shipyards) been taken by the architects of the first Modernity, as their main formal, compositional and imaginary models, while the Second Machine Age had taken them as a spatial and organizational model for their architecture. The above mentioned lineage of technologists includes weel-known ‘seed lines’ as: Eiffel- Suchov-Behrens, Gropius-Mies-LeCorbusier- Lods-Prouve, in continental Europe; British branches as Loudon-Paxton-Williams-Stirling- Gowan-Smithsons-Price-Archigram-Foster- Rogers-Piano-Kaplicky-Horden. And we could also find intercontinental connections as Fuller- Eames-Rudolph-Foster-Rogers, or other less predictable ramifications as LeRicolais-Kahn Piano-Kaplicky, or LeCorbusier-Frey-Lacaton & Vassal... Many more would surely deserve to be included in this list, and indeed, the thesis assumes the impossibility of including them all (for practical reasons) and even contemplates possible future extensions. The material included herein is to demonstrate the continuity in the approaches, statements and in the applied architectural design techniques, from which we can draw some conclusions. Today, one hundred years after Ford put up the moving assembly line, we still find this tradition alive in the words of the architect Richard Horden, whose work carries with it –as with the information embedded in every technical element- the whole techncial culture of a modern tradition. Horden is represented here as one of the exponents of what I have called the lineage of technologists. That is why I wanted to conclude the thesis with an interview to Richard Horden, held in May 2015 in his studio in London's Berkeley Square (see Appendices). Guides For the development of this thesis, another thesis, entitled: The mode of existence of technical objects, is taken as the main reference work. Read and published in 1958 by the French philosopher Gilbert Simondon [1924- 1989], it was dedicated to the ontology of the technical object. This work frames the intellectual approach of the thesis, which connects with phenomenology to mobilize a particular vision of Architecture. It is used as a model of ontological analysis to study its genesis, invention and evolutionary processes. To develop these, another work by the same author, titled Imagination and Invention (1965- 1966) has been used as a bibliographical complement. As for the disciplinary historical sources, Reyner P. Banham [1922-1988] and Martin E. Pawley [1938-2008] have been chosen as guides through the modern Architecture of the twentieth century. Their cronical reports on the First and Second Machine Age and their critical works have served as an index from which to reconstruct the imaginary of the modern technical object in the Machine Age7, and to stock up on projects and works of architecture, used as case studies for the thesis. These works have also been used as triggers for other literatures, which has been complementary to the former. Objectives of the Thesis The main objective of the thesis is to prove its hypothesis: if a work of architecture can be considered a technical object and under what conditions, building then a criterion for recognizing when a work of architecture meets the definition of a technical object. Another aim is to demonstrate the importance and power of Technology Transfer in the evolutionary process of Architecture, and to do it, some examples of a methodology for architectural design that Martin Pawley called 'Design by Assembly' are presented. It is also an objective to reconstruct an Atlas of the imaginary of the modern technical object, in order to better understand the causes, reasons and purposes that led modern architects to pursue architecture as a technical object. This Atlas allows to panoptically relate the various technical objects, revealing the true importance and significance of those and the architecture with whom they interact. Architectures are again at the largest and most complex industrial context and the history of technology, which always belonged. Thus, they are able to reveal all the knowledge-in the shape of information-carried in their own 'genetic' code, displaying full chapters of technological culture as old as mankind and constantly growing and evolving. Thesis: Proving the Hypothesis Simondon ontologically defined the technical object as ‘that of which genesis exists’ and that develops ‘a tendency towards solidarity and unity’. For an architecture to be recognized as a technical object, a number of conditions should be given, in the successive phases involved in their mode of existence: Imagination. These architectures refer to an imaginary featuring images-object other technical objects (technical sets, technical individuals and technical elements). These images are the means to an eidetic transfer of the technical objects which they symbolize. Invention. These architectures are the result of tectonic transfers, which occur during the architectural design process, by assembling materials, components or procedures used in industry for the production of other technical objects. Individuation. These architectures evolve and are individualized by ‘concretization’, a process leading to the full integration of its parts and aiming the full convergence of its functions into a single structure. This integration tends towards the naturalization of the technical object, by means of a symbiotic incorporation of their associated milieus. After checking if there is a genesis of them, which evolves through the phases of imagination and invention and concretization, their imaginary, materiality, structure and organization are analyzed in order to detect patterns and common organizational principles to other technical objects counterparts. Structure The main text of the thesis consists of three parts. Before there is an Introduction to the main concepts that are exploited in the thesis on ontology Simondonian technical object, and technology transfer applied to Architecture. Then a first part covers the Imaginary of the modern technical object, a second part is dedicated to the Invention and a third part to the individuation process The thesis ends with a section for the Discussion and the Conclusions. The Introduction to the technical object, this is ontologically defined and its different categories are distinguished. The process of genesis of the technical object and the phases of imagination, invention and indivuation are explained. Concepts as Transduction, Technicality and Technical system are presented for being fundamental to understand the concept of Technology Transfer that will take place later. The concretization is explained as the particular mode of individuation and evolution of technical objects, a process by which the different parts of a technical object, are integrated and begin a tendency towards a convergence in itself. The first part, dedicated to the Imagination of the architectural technical object presents a parcial "archaeological" reconstruction the imaginary of the modern technical object, intended to better understand its genesis and the relationship with other technical objects. The imaginary sources are searched in the premises of the Industry of the early twentieth century, and particularly in the factories of modern vehicles, in order to see, to what extent these technical objects were important to imagine modern architecture. The reconstruction is continued until the Second Machine Age, when a new, more inquisitive and precise gaze turns to other factories, other vehicles and other components and materials, inquiring now about their organizational qualities. The second part is devoted to the Invention of the architectural technical object. The effectiveness of the simondonian concept of Transduction is checked: a transmitted and transformed sign or information, which relates to Technology Transfer, a synergetic process by which an industrial sector benefits from the development of another sector, to which some architects and historians have explicitly referred to explain their works during Machine Age, and which is crucial for the development of the industry. Technology transfer would be the transmission of a set of information or knowledge about technique, including the factual sphere of technique, but also the sensitive sphere of experience. In their application to Architecture, these transfers have been classified according to three types: Eidetic, Tectonic and Organic. Eidetic Transfers operate from an intuitive knowledge and are useful for transmitting information about the essence of the technical object serving as a source. Abstract concepts are transmitted through the object-images to produce an equivalent transformation in Architecture. A group of concepts that have been the subject of technology transfers of eidetic nature, and have been originated in the imaginary of the modern technical object, have been detected as a result of the research: FABRICATED, INHABITABLE, FUNCTIONAL, EFFICIENT, OBSOLESCENT, and BEAUTIFUL. The transfers can also be Tectonic when, that which is transferred is a constructive or structural technique, applied through artificial MATERIALS such as metals, composites as the ferrocement, or plywood, or alloys such as aluminum; or by means of the assembly of STRUCTURES or parts of other technical objects such as hulls, fuselages, car bodies or rigs, resulting in the invention of a new architectural technical object. In the case of ORGANIC transfers, what is transferred is an organizational technique, applied by means of a set of PROCEDURES defining the activity of the architect as a technologist and inventor of technical objects. These procedures have a transformative effect on three traditional institutions for Architecture: the School, the Atelier and the Work, and the results are summarized in new models of organization of the Education of Architecture, with the onset of the Architectural Design Studios or workshops; new models of organization of the practice of architect: the technical office; and new models of space organization, based on the spatial organization of the industry, resulting in spatial patterns or spatial matrices; a new model of organization of the project, which uses graphical tools and industrail protocols as the assembly as a methodology; a new model of architectural production based on the industrialization. After explaining the concepts and the genesis of assembly and montage, Design by assembly is presented as a method that promotes architectural invention, and is shown using some case studies analyzed in the thesis, in which there has been made some conceptual, constructive or organizational transfer. After analyzing the architectures studied in the thesis, genetic method proposed by Simondon was used to understand every particular evolution, reconstructing their genealogical lines up to their ancestors, identifying a series of genetic lineages, which correspond to the technical sets studied in the thesis : the shipyard, the car factory, and aircraft factory. The real ancestors of Modernity. The spatial organization systems of these technical sets are directly related to the technical object that is fabricated within them. From that point, a number of operational matrices are defined (MILL, SHOP, SHED) and used to make a taxonomy of the architectural technical object. This is exemplified by some projects by architects as Norman Foster, Richard Rogers, Renzo Piano, Nicholas Grimshaw, Jean and Richard Horden Kaplicky. Interest of the thesis Since the beginning of the new century, several authors have shown a renewed interest in defining what a project is, how it is constituted and what it is for. The approaches to the subject are brought from analytic philosophy (Galle, 2008) or from the philosophy of technology (Verbeek, 2005; Vermaas, 2009) and they often speak about the relationship between design and material culture (Dorschel 2003, 2010 or Preston Boradkar 2012). It is also important to note the recent and growing interest in the work of French philosopher Gilbert Simondon [1924-1989], mainly known for its important contribution to the philosophy of technology and phenomenology of the technical object, and the influence on the thinking of contemporary philosophers as Paolo Virno, Bruno Latour or Gilles Deleuze, being the latter a author present in many doctoral theses and theoretical research conducted at major architecture schools around the world since the 90s to the present. The republication and translation of the work of Simondon (eng. 1980, spn. 2008) has received the attention from current philosophers such as Bernard Stiegler who continues to use its study and analysis to advance his thinking, thus being present in the contemporary debate about the technique. After its recent translation into Spanish, the thought of Simondon has aroused great interest in Latin America, as evidenced by the organization of various conferences and symposia, as well as the proliferation of publications about his work and thought8. Future translations of the rest of his major works, will ensure increased introduction in the academic community. Efforts have been made to present an alternative view of the History of Modern Architecture, using a reporter as Reyner P.Banham as a guide. The Machine Age intersects Simondon’s mechanology and his "technical vitalism", resulting in a fresh, renewed and optimistic interpretation of some of the most important works of Architecture of the twentieth century, which will surely contribute to the development of this century’s Architecture, already immersed in the paradigm shift towards sustainability and ecology.
Resumo:
Today, the requirement of professional skills to university students is constantly increasing in our society. In our opinion, the content offered in official degrees need to be nourished with different variables, enriching their global professional knowledge in a parallel way; that is why, in recent years, there is a great multiplicity of complementary courses at university. One of the most socially demanded technical requirements within the architectural, design or engineering field is the management of 3D drawing software, becoming an indispensable reality in these sectors. Thus, this specific training becomes essential over two-dimension traditional design, because the inclusion of great possibilities of spatial development that go beyond conventional orthographic projections (plans, sections or elevations), allowing modelling and rotation of the selected items from multiple angles and perspectives. Therefore, this paper analyzes the teaching methodology of a complementary course for those technicians in the construction industry interested in computer-aided design, using modelling (SketchupMake) and rendering programs (Kerkythea). The course is developed from the technician point of view, by learning computer management and its application to professional development from a more general to a more specific view through practical examples. The proposed methodology is based on the development of real examples in different professional environments such as rehabilitation, new constructions, opening projects or architectural design. This multidisciplinary contribution improves criticism of students in different areas, encouraging new learning strategies and the independent development of three-dimensional solutions. Thus, the practical implementation of new situations, even suggested by the students themselves, ensures active participation, saving time during the design process and the increase of effectiveness when generating elements which may be represented, moved or virtually tested. In conclusion, this teaching-learning methodology improves the skills and competencies of students to face the growing professional demands of society. After finishing the course, technicians not only improved their expertise in the field of drawing but they also enhanced their capacity for spatial vision; both essential qualities in these sectors that can be applied to their professional development with great success.
Resumo:
"June 1990."