936 resultados para Arabian Basin
Resumo:
The Mount Isa Basin is a new concept used to describe the area of Palaeo- to Mesoproterozoic rocks south of the Murphy Inlier and inappropriately described presently as the Mount Isa Inlier. The new basin concept presented in this thesis allows for the characterisation of basin-wide structural deformation, correlation of mineralisation with particular lithostratigraphic and seismic stratigraphic packages, and the recognition of areas with petroleum exploration potential. The northern depositional margin of the Mount Isa Basin is the metamorphic, intrusive and volcanic complex here referred to as the Murphy Inlier (not the "Murphy Tectonic Ridge"). The eastern, southern and western boundaries of the basin are obscured by younger basins (Carpentaria, Eromanga and Georgina Basins). The Murphy Inlier rocks comprise the seismic basement to the Mount Isa Basin sequence. Evidence for the continuity of the Mount Isa Basin with the McArthur Basin to the northwest and the Willyama Block (Basin) at Broken Hill to the south is presented. These areas combined with several other areas of similar age are believed to have comprised the Carpentarian Superbasin (new term). The application of seismic exploration within Authority to Prospect (ATP) 423P at the northern margin of the basin was critical to the recognition and definition of the Mount Isa Basin. The Mount Isa Basin is structurally analogous to the Palaeozoic Arkoma Basin of Illinois and Arkansas in southern USA but, as with all basins it contains unique characteristics, a function of its individual development history. The Mount Isa Basin evolved in a manner similar to many well described, Phanerozoic plate tectonic driven basins. A full Wilson Cycle is recognised and a plate tectonic model proposed. The northern Mount Isa Basin is defined as the Proterozoic basin area northwest of the Mount Gordon Fault. Deposition in the northern Mount Isa Basin began with a rift sequence of volcaniclastic sediments followed by a passive margin drift phase comprising mostly carbonate rocks. Following the rift and drift phases, major north-south compression produced east-west thrusting in the south of the basin inverting the older sequences. This compression produced an asymmetric epi- or intra-cratonic clastic dominated peripheral foreland basin provenanced in the south and thinning markedly to a stable platform area (the Murphy Inlier) in the north. The fmal major deformation comprised east-west compression producing north-south aligned faults that are particularly prominent at Mount Isa. Potential field studies of the northern Mount Isa Basin, principally using magnetic data (and to a lesser extent gravity data, satellite images and aerial photographs) exhibit remarkable correlation with the reflection seismic data. The potential field data contributed significantly to the unravelling of the northern Mount Isa Basin architecture and deformation. Structurally, the Mount Isa Basin consists of three distinct regions. From the north to the south they are the Bowthorn Block, the Riversleigh Fold Zone and the Cloncurry Orogen (new names). The Bowthom Block, which is located between the Elizabeth Creek Thrust Zone and the Murphy Inlier, consists of an asymmetric wedge of volcanic, carbonate and clastic rocks. It ranges from over 10 000 m stratigraphic thickness in the south to less than 2000 min the north. The Bowthorn Block is relatively undeformed: however, it contains a series of reverse faults trending east-west that are interpreted from seismic data to be down-to-the-north normal faults that have been reactivated as thrusts. The Riversleigh Fold Zone is a folded and faulted region south of the Bowthorn Block, comprising much of the area formerly referred to as the Lawn Hill Platform. The Cloncurry Orogen consists of the area and sequences equivalent to the former Mount Isa Orogen. The name Cloncurry Orogen clearly distinguishes this area from the wider concept of the Mount Isa Basin. The South Nicholson Group and its probable correlatives, the Pilpah Sandstone and Quamby Conglomerate, comprise a later phase of now largely eroded deposits within the Mount Isa Basin. The name South Nicholson Basin is now outmoded as this terminology only applied to the South Nicholson Group unlike the original broader definition in Brown et al. (1968). Cored slimhole stratigraphic and mineral wells drilled by Amoco, Esso, Elf Aquitaine and Carpentaria Exploration prior to 1986, penetrated much of the stratigraphy and intersected both minor oil and gas shows plus excellent potential source rocks. The raw data were reinterpreted and augmented with seismic stratigraphy and source rock data from resampled mineral and petroleum stratigraphic exploration wells for this study. Since 1986, Comalco Aluminium Limited, as operator of a joint venture with Monument Resources Australia Limited and Bridge Oil Limited, recorded approximately 1000 km of reflection seismic data within the basin and drilled one conventional stratigraphic petroleum well, Beamesbrook-1. This work was the first reflection seismic and first conventional petroleum test of the northern Mount Isa Basin. When incorporated into the newly developed foreland basin and maturity models, a grass roots petroleum exploration play was recognised and this led to the present thesis. The Mount Isa Basin was seen to contain excellent source rocks coupled with potential reservoirs and all of the other essential aspects of a conventional petroleum exploration play. This play, although high risk, was commensurate with the enormous and totally untested petroleum potential of the basin. The basin was assessed for hydrocarbons in 1992 with three conventional exploration wells, Desert Creek-1, Argyle Creek-1 and Egilabria-1. These wells also tested and confrrmed the proposed basin model. No commercially viable oil or gas was encountered although evidence of its former existence was found. In addition to the petroleum exploration, indeed as a consequence of it, the association of the extensive base metal and other mineralisation in the Mount Isa Basin with hydrocarbons could not be overlooked. A comprehensive analysis of the available data suggests a link between the migration and possible generation or destruction of hydrocarbons and metal bearing fluids. Consequently, base metal exploration based on hydrocarbon exploration concepts is probably. the most effective technique in such basins. The metal-hydrocarbon-sedimentary basin-plate tectonic association (analogous to Phanerozoic models) is a compelling outcome of this work on the Palaeo- to Mesoproterozoic Mount lsa Basin. Petroleum within the Bowthom Block was apparently destroyed by hot brines that produced many ore deposits elsewhere in the basin.
Resumo:
Large igneous provinces (LIPs) are sites of the most frequently recurring, largest volume basaltic and silicic eruptions in Earth history. These large-volume (N1000 km3 dense rock equivalent) and large-magnitude (NM8) eruptions produce areally extensive (104–105 km2) basaltic lava flow fields and silicic ignimbrites that are the main building blocks of LIPs. Available information on the largest eruptive units are primarily from the Columbia River and Deccan provinces for the dimensions of flood basalt eruptions, and the Paraná–Etendeka and Afro-Arabian provinces for the silicic ignimbrite eruptions. In addition, three large-volume (675– 2000 km3) silicic lava flows have also been mapped out in the Proterozoic Gawler Range province (Australia), an interpreted LIP remnant. Magma volumes of N1000 km3 have also been emplaced as high-level basaltic and rhyolitic sills in LIPs. The data sets indicate comparable eruption magnitudes between the basaltic and silicic eruptions, but due to considerable volumes residing as co-ignimbrite ash deposits, the current volume constraints for the silicic ignimbrite eruptions may be considerably underestimated. Magma composition thus appears to be no barrier to the volume of magma emitted during an individual eruption. Despite this general similarity in magnitude, flood basaltic and silicic eruptions are very different in terms of eruption style, duration, intensity, vent configuration, and emplacement style. Flood basaltic eruptions are dominantly effusive and Hawaiian–Strombolian in style, with magma discharge rates of ~106–108 kg s−1 and eruption durations estimated at years to tens of years that emplace dominantly compound pahoehoe lava flow fields. Effusive and fissural eruptions have also emplaced some large-volume silicic lavas, but discharge rates are unknown, and may be up to an order of magnitude greater than those of flood basalt lava eruptions for emplacement to be on realistic time scales (b10 years). Most silicic eruptions, however, are moderately to highly explosive, producing co-current pyroclastic fountains (rarely Plinian) with discharge rates of 109– 1011 kg s−1 that emplace welded to rheomorphic ignimbrites. At present, durations for the large-magnitude silicic eruptions are unconstrained; at discharge rates of 109 kg s−1, equivalent to the peak of the 1991 Mt Pinatubo eruption, the largest silicic eruptions would take many months to evacuate N5000 km3 of magma. The generally simple deposit structure is more suggestive of short-duration (hours to days) and high intensity (~1011 kg s−1) eruptions, perhaps with hiatuses in some cases. These extreme discharge rates would be facilitated by multiple point, fissure and/or ring fracture venting of magma. Eruption frequencies are much elevated for large-magnitude eruptions of both magma types during LIP-forming episodes. However, in basaltdominated provinces (continental and ocean basin flood basalt provinces, oceanic plateaus, volcanic rifted margins), large magnitude (NM8) basaltic eruptions have much shorter recurrence intervals of 103–104 years, whereas similar magnitude silicic eruptions may have recurrence intervals of up to 105 years. The Paraná– Etendeka province was the site of at least nine NM8 silicic eruptions over an ~1 Myr period at ~132 Ma; a similar eruption frequency, although with a fewer number of silicic eruptions is also observed for the Afro- Arabian Province. The huge volumes of basaltic and silicic magma erupted in quick succession during LIP events raises several unresolved issues in terms of locus of magma generation and storage (if any) in the crust prior to eruption, and paths and rates of ascent from magma reservoirs to the surface.
Resumo:
The business of helping children to grow up as ‘custodians’, or ‘future managers’ of the Murray-Darling Basin is not simple, and that single sources of information and ways of seeing the environment are not enough. Children (and adults) need to be able to relate individually, emotionally and aesthetically to their places if they are to learn to love them. However, they also need access to a variety of ways of thinking and seeing those same places if they are to be able to take action to sustain them – action that inevitably involves forms of communication with their fellow citizens. This chapter documents the writing and art program Special Forever, with its focus on communications, as an important intervention into promoting eco-social sustainability.
Resumo:
The legal arrangements for the management of the Murray-Darling Basin in Australia have changed significantly over the years. The Constitution of the Commonwealth has led to the legal arrangements for the management of the Murray-Darling Basin. The Water Act 2000 of Queensland aimed at advancing sustainable management and efficient use of water and other resources by establishing a system for the planning, allocation and use of water. The Water Management Act 2000 of New South Wales ensures the sustainable and integrated management of the water resources of the state benefiting the present and future generations. The Natural Resources Management Act 2004 of South Australia applies to water resources and to other natural resources. The Act aimed at assisting the achievement of ecologically sustainable development in the state.
Resumo:
The purpose of the study: The purpose of this study is to investigate the influence of cultural diversity, in a multicultural nursing workforce, on the quality and safety of patient care and the work environment at King Abdul-Aziz Medical City, Riyadh region. Study background: Due to global migration and workforce mobility, to varying degrees, cultural diversity exists in most health services around the world, particularly occurring where the health care workforce is multicultural or where the domestic population comprises minority groups from different cultures speaking different languages. Further complexities occur when countries have a multicultural workforce which is different from the population for whom they care, in addition to the workers being from culturally diverse countries and with different languages. In Saudi Arabia the health system is mainly staffed by expatriate nurses who comprise 67.7% of the total number of nurses. Study design: This research utilised a case study design which incorporated multiple methods including survey, qualitative interviews and document review. Methods: The participant nurses were selected for the survey via a population sampling strategy; 319 nurses returned their completed Safety Climate Survey questionnaires. Descriptive and inferential statistics (Kruskal–Wallis test) were used to analyse survey data. For the qualitative component of the study, a purposive sampling strategy was used; 24 nurses were interviewed using a semi-structured interview technique. The documentary review included KAMC-R policy documents that met the inclusion criteria using a predetermined data abstraction instrument. Content analysis was used to analyse the policy documents data. Results: The data revealed the nurses‘ perceptions of the clinical climate in this multicultural environment is that it was unsafe, with a mean score of 3.9 out of 5. No significant difference was detected between the age groups or years of experience of the nurses and the perception of safety climate in this context; the study did reveal a statistically significant difference between the cultural background categories and the perception of safety climate. The qualitative phase indicated that the nurses within this environment were struggling to achieve cultural competence; consequently, they were having difficulties in meeting the patients‘ cultural and spiritual needs as well as maintaining a high standard of care. The results also indicated that nurses were disempowered in this context. Importantly, there was inadequate support by the organisation to manage the cultural diversity issue and to protect patients from any associated risks, as demonstrated by the policy documents and supported by the nurses‘ experiences. The study also illustrated the limitations of the conceptual framework of cultural competence when tested in this multicultural workforce context. Therefore, this study generated amendments to the model that is suitable to be used in the context of a multicultural nursing workforce. Conclusion: The multicultural nature of this nursing work environment is inherently risky due to the conflicts that arise from the different cultural norms, beliefs, behaviours and languages. Further, there was uncertainty within the multicultural nursing workforce about the clinical and cultural safety of the patient care environment and about the cultural safety of the nursing workforce. The findings of the study contribute important new knowledge to the area of patient and nurse safety in a multicultural environment and contribute theoretical development to the field of cultural competence. Specifically, the findings will inform policy and practice related to patient care in the context of cultural diversity.
Resumo:
A detailed 3D lithological model framework was developed using GOCAD software to understand interactions between alluvial, volcanic and GAB aquifers and the spatial and temporal distribution of groundwater recharge to the alluvium of the Lockyer Valley. Groundwater chemistry, isotope data (H20-δ2H and δ18O , 87Sr/86Sr, 3H and 14C) and groundwater level time-series data from approximately 550 observation wells were integrated into the catchment-wide 3D model to assess the recharge processes involved. This approach enabled the identification of zones where recharge to the alluvium primarily occurs from stream water during episodic flood events. Importantly, the study also demonstrates that in some sections of the alluvium recharge is also from storm rainfall and seepage discharge from the underlying GAB aquifers. These other sources of recharge are indicated by (a) the absence of a response of groundwater levels to flooding in some areas, (b) old radiocarbon ages, and (c) distinct bedrock water chemistry and δ2H and δ18O signatures in alluvial groundwater at these locations. Integration of isotopes, water chemistry and time-series displays of groundwater levels before and after the 2010/2011 flood into the 3D model suggest that the spatial variations in the alluvial groundwater response are mostly controlled by valley morphology and lithological (i.e. permeability) variations within the alluvium. Examination of the groundwater level variations in the 3D model also enabled quantification of the volumetric change of groundwater stored in the unconfined alluvial aquifer prior to and post-flood events.