954 resultados para Aquatic fungi
Resumo:
In contrast to a published report [Wali et al. Arch Microbiol 118:49–53 (1978)], an organic acid is not essential for the growth of thermophilic fungi. The thermophilic fungus, Thermomyces lanuginosus, grows satisfactorily in a synthetic medium containing glucose as carbon source if the pH of the medium is controlled. The control of pH is essential for the concentration of carbon dioxide in the growth medium and the activity of anaplerotic enzyme, pyruvate carboxylase.
Resumo:
Aims: To assay sago starch from Papua New Guinea (PNG) for important mycotoxins and to test fungal isolates from sago for mycotoxin production in culture. Methods and Results: Sago starch collected from Western and East Sepik Provinces was assayed for aflatoxins, ochratoxin A, cyclopiazonic acid, sterigmatocystin, citrinin and zearalenone and all 51 samples were negative. Frequently isolated species of Penicillium (13), Aspergillus (five) and Fusarium (one) were cultured on wheat grain, and tested for the production of ochratoxin A, cyclopiazonic acid, sterigmatocystin, citrinin, patulin and penicillic acid. All 12 isolates of P. citrinin and one of two A. flavipes isolates produced citrinin. A single isolate of A. versicolor produced sterigmatocystin. No other mycotoxins were detected in these cultures. Conclusions: No evidence was found of systemic mycotoxin contamination of sago starch. However, the isolation of several mycotoxigenic fungi shows the potential for citrinin and other mycotoxins to be produced in sago stored under special conditions. Significance and Impact of the study: Sago starch is the staple carbohydrate in lowland PNG and the absence of mycotoxins in freshly prepared sago starch is a positive finding. However, the frequent isolation of citrinin-producing fungi indicates a potential health risk for sago consumers, and food safety is dependant on promoting good storage practices.
Resumo:
A new smut fungus, Ustilago lituana, is described and illustrated on the grass Triodia epactia from Western Australia. It is compared with the three known smut fungi on Triodia and a key for identifying these species is given.
Resumo:
We investigated whether plasticity in growth responses to nutrients could predict invasive potential in aquatic plants by measuring the effects of nutrients on growth of eight non-invasive native and six invasive exotic aquatic plant species. Nutrients were applied at two levels, approximating those found in urbanized and relatively undisturbed catchments, respectively. To identify systematic differences between invasive and non-invasive species, we compared the growth responses (total biomass, root:shoot allocation, and photosynthetic surface area) of native species with those of related invasive species after 13 weeks growth. The results were used to seek evidence of invasive potential among four recently naturalized species. There was evidence that invasive species tend to accumulate more biomass than native species (P = 0.0788). Root:shoot allocation did not differ between native and invasive plant species, nor was allocation affected by nutrient addition. However, the photosynthetic surface area of invasive species tended to increase with nutrients, whereas it did not among native species (P = 0.0658). Of the four recently naturalized species, Hydrocleys nymphoides showed the same nutrient-related plasticity in photosynthetic area displayed by known invasive species. Cyperus papyrus showed a strong reduction in photosynthetic area with increased nutrients. H. nymphoides and C. papyrus also accumulated more biomass than their native relatives. H. nymphoides possesses both of the traits we found to be associated with invasiveness, and should thus be regarded as likely to be invasive.
Resumo:
Seed persistence of Gymnocoronis spilanthoides (D.Don) DC.; Asteraceae (Senegal tea), a serious weed of freshwater habitats, was examined in relation to burial status and different soil moisture regimes over a 3-year period. Seeds were found to be highly persistent, especially when buried. At the end of the experiment, 42.0%, 27.3% and 61.4% of buried seeds were viable following maintenance at field capacity, water logged and fluctuating (cycles of 1 week at field capacity followed by 3 weeks’ drying down) soil moisture conditions, respectively. Comparable viability values for surface-situated seeds were ~3% over all soil moisture regimes. Predicted times to1% viability are 16.2 years for buried seed and 3.8 years for surface-situated seed. Persistence was attributed primarily to the absence of light, a near-obligate requirement for germination in this species, although secondary dormancy was induced in some seeds. Previous work has demonstrated low fecundity in field populations of G. spilanthoides, which suggests that soil seed banks may not be particularly large. However, high levels of seed persistence, combined with ostensibly effective dispersal mechanisms, indicate that this weed may prove a difficult target for regional or state-wide eradication.
Resumo:
Root-lesion nematode (Pratylenchus thornei) significantly reduces wheat yields in the northern Australian grain region. Canola is thought to have a 'biofumigation' potential to control nematodes; therefore, a field experiment was designed to compare canola with other winter crops or clean-fallow for reducing P. thornei population densities and improving growth of P. thornei-intolerant wheat (cv. Batavia) in the following year. Immediately after harvest of the first-year crops, populations of P. thornei were lowest following various canola cultivars or clean-fallow (1957-5200 P. thornei/kg dry soil) and were highest following susceptible wheat cultivars (31 033-41 294/kg dry soil). Unexpectedly, at planting of the second-year wheat crop, nematode populations were at more uniform lower levels (<5000/kg dry soil), irrespective of the previous season's treatment, and remained that way during the growing season, which was quite dry. Growth and grain yield of the second-year wheat crop were poorest on plots previously planted with canola or left fallow due to poor colonisation with arbuscular mycorrhizal (AM) fungi, with the exception of canola cv. Karoo, which had high AM fungal colonisation and low wheat yields. There were significant regressions between growth and yield parameters of the second-year wheat and levels of AMF following the pre-crop treatments. Thus, canola appears to be a good crop for reducing P. thornei populations, but AM fungal-dependence of subsequent crops should be considered, particularly in the northern Australian grain region.
Resumo:
This report summarises work conducted by the QDPI, in partnership with the South Burdekin Water Board (SBWB) and the Burdekin Shire Council (BSC) between 2001 and 2003. The broad aim of the research was to assess the potential of native fish as biocontrol agents for noxious weeds, as part of an integrated program for managing water quality in the Burdekin Irrigation Area. A series of trials were conducted at, or using water derived from, the Sandy Creek Diversion near Groper Creek (lower Burdekin delta). Trials demonstrated that aquatic weeds play a positive role in trapping transient nutrients, until such time that weed growth becomes self-shading and weed dieback occurs, which releases stored nutrients and adversely affects water quality. Transient nutrient levels (av. TN<0.5mg/L; av. TP<0.1mg/L) found in the irrigation channel during the course of this research were substantially lower than expected, especially considering the intensive agriculture and sewage effluent discharge upstream from the study site. This confirms the need to consider the control of weeds rather than complete weed extermination when formulating management plans. However, even when low nutrient levels are available, there is competitive exploitation of habitat variables in the irrigation area leading to succession and eventual domination by certain weed species. During these trials, we have seen filamentous algae, phytoplankton, hyacinth and curled pondweed each hold competitive advantage at certain points. However without intervention, floating weeds, especially hyacinth, ultimately predominate in the Burdekin delta due to their fast propagation rate and their ability to out-shade submerged plants. We have highlighted the complexity of interactions in these highly disturbed ecosystems in that even if the more prevalent noxious weeds are contained, other weed species will exploit the vacant niche. This complexity places stringent requirements on the type of native fish that can be used as biocontrol agents. Of the seven fish species identified with herbivorous trophic niches, most target plankton or algae and do not have the physical capacity to directly eat the larger macrophytes of the delta. We do find however that following mechanical weed harvesting, inoculative releases of fish can slow the rate of hyacinth recolonisation. This occurs by mechanisms in addition to direct weed consumption, such as disturbing growth surfaces by grazing on attached biofilms. Predation by birds and water rats presents another impediment to the efficacy of large-scale releases of fish. However, alternative uses of fish in water quality management in the Burdekin irrigation area are discussed.
Resumo:
The development of biotechnology techniques in plant breeding and the new commercial applications have raised public and scientific concerns about the safety of genetically modified (GM) crops and trees. To find out the feasibility of these new technologies in the breeding of commercially important Finnish hardwood species and to estimate the ecological risks of the produced transgenic plants, the experiments of this study have been conducted as a part of a larger project focusing on the risk assessment of GM-trees. Transgenic Betula pendula and Populus trees were produced via Agrobacterium mediated transformation. Stilbene synthase (STS) gene from pine (Pinus sylvestris) and chitinase gene from sugar beet (Beta vulgaris) were transferred to (hybrid) aspen and birch, respectively, to improve disease resistance against fungal pathogens. To modify lignin biosynthesis, a 4-coumarate:coenzyme A ligase (4CL) gene fragment in antisense orientation was introduced into two birch clones. In in vitro test, one transgenic aspen line expressing pine STS gene showed increased resistance to decay fungus Phellinus tremulae. In the field, chitinase transgenic birch lines were more susceptible to leaf spot (Pyrenopeziza betulicola) than the non-transgenic control clone while the resistance against birch rust (Melampsoridium betulinum) was improved. No changes in the content or composition of lignin were detected in the 4CL antisense birch lines. In order to evaluate the ecological effects of the produced GM trees on non-target organisms, an in vitro mycorrhiza experiment with Paxillus involutus and a decomposition experiment in the field were performed. The expression of a transgenic chitinase did not disturb the establishment of mycorrhizal symbiosis between birch and P. involutus in vitro. 4CL antisense transformed birch lines showed retarded root growth but were able to form normal ectomycorrhizal associations with the mycorrhizal fungus in vitro. 4CL lines also showed normal litter decomposition. Unexpected growth reductions resulting from the gene transformation were observed in chitinase transgenic and 4CL antisense birch lines. These results indicate that genetic engineering can provide a tool in increasing disease resistance in Finnish tree species. More extensive data with several ectomycorrhizal species is needed to evaluate the consequences of transgene expression on beneficial plant-fungus symbioses. The potential pleiotropic effects of the transgene should also be taken into account when considering the safety of transgenic trees.
Resumo:
Tribolium castaneum Herbst (Coleoptera: Tenebrionidae) is a common stored grain pest for which a wide range of suitable resources has been recorded. These beetles are facultatively fungivorous and their resource range may extend to fungi associated with non-grain resources (e.g. cotton seed) and other decaying plant matter. Little is known with respect to fungi in terms of resource location by these beetles in the field. We, therefore, conducted a series of experiments in laboratory arenas, glasshouse cages and the field to determine how beetles respond to grain resources in relation to cotton seed (together with its lint stubble and associated fungal flora). Results from the tests conducted in relatively small arenas and cages in the laboratory and glasshouse reveal that the responses of T. castaneum adults to food resources were twice as strong when walking as when flying (as measured by the proportion of the released beetles that were trapped). Also, a clear preference for linted cotton seeds was evident in walking T. castaneum, especially in small-scale arenas in the laboratory, where at least 60% of beetles released preferred linted cotton seeds over wheat and sorghum. Similarly, in cages (1 m3) they responded five times more strongly to linted cotton seed than to conventional grain resources. However, this pattern was not consistent with those obtained from field trapping over 20 m and the beetles did not show any particular preference to any of the resources tested above. Our results suggest a focus on walking beetles in trapping studies for population estimations and, for developing effective food-based trapping lures, the potential use of active volatiles from the fungi associated with linted cotton seed. © 2012 Elsevier Ltd.
Resumo:
We tested, in an olfactometer, whether or not Tribolium castaneum Herbst (Coleoptera: Tenebrionidae) responds preferentially to the volatiles that emanate from the fungi associated with cotton [Gossypium hirsutum L. (Malvaceae)] seed over those that emanate from cereals, because cereals are usually portrayed as the primary resources of these beetles. Pairwise comparisons were conducted between cotton seed, wheat (Triticum aestivum L.), and sorghum [Sorghum bicolor (L.) Moench] (both Poaceae); volatiles were tested from intact seeds and from both water and ethanol extracts. The results demonstrate that T. castaneum is attracted more strongly to cotton seeds with its lint contaminated with fungi, than to the conventional resources of this species (i.e., wheat and sorghum). Further tests prove that it is the fungus on the lint that produces the active volatiles, because the beetles did not respond to sterilized cotton lint (i.e., without the fungi typically associated with it when cotton seed is stored). Tests with five fungal cultures (each representing an unidentified species that was isolated from the field-collected cotton lint) were variable across the cultures, with only one of them being significantly attractive to the beetles. The others were not attractive and one may even have repulsed the beetles. The results are consistent with the beetles having a strong ecological association with fungi and suggest it would be worth investigating the ecology of T. castaneum from this perspective. © 2012 The Netherlands Entomological Society.
Resumo:
Calonectria ilicicola, Gliocladiopsis sp. and Ilyonectria liriodendri were isolated from diseased roots of young avocado trees. Pathogenicity studies with seedlings of three avocado cultivars, Velvick, Hass and Reed, demonstrated that Calonectria ilicicola is a severe root rot pathogen, reducing the biomass of healthy roots, and reducing plant height over time. Calonectria ilicicola was re-isolated from diseased roots. Ilyonectria liriodendri and Gliocladiopsis sp. were not pathogenic and plant height was increased after Gliocladiopsis sp. amendment compared to all other treatments in trials with cvs Velvick and Hass.