994 resultados para Apolipoprotein Levels


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract. Background: This study investigated the hypothesis that long-term orange juice consumption (≥ 12 months) was associated with low risk factors for cardiovascular disease in adult men and women with normal and moderately high cholesterol blood levels. Methods. The sample consisted of 103 men (18-66 y) and 26 women (18-65 y); all were employees of an orange juice factory with daily access to free orange juice. The results showed that 41% of the individuals consumed 2 cups (480 mL) of orange juice per day for at least twelve months, while 59% of the volunteers are non-consumers of orange juice. Results: Orange juice consumers with normal serum lipid levels had significantly lower total cholesterol (-11%, p <0.001), LDL-cholesterol (-18%, p < 0.001), apolipoprotein B (apo B) (-12%, p < 0.01) and LDL/HDL ratio (-12%, p < 0.04) in comparison to non-consumers, as did the consumers with moderate hypercholesterolemia: lower total cholesterol (-5%, p <0.02), LDL-cholesterol (-12%, p <0.03), apolipoprotein B (-12%, p <0.01) and LDL/HDL ratio (-16%, p <0.05) in comparison the non-consumers counterparts. Serum levels of homocysteine, HDL- cholesterol and apolipoprotein A-1, body composition and the dietary intake of food energy and macronutrients did not differ among orange juice consumers and non-consumers, but vitamin C and folate intake was higher in orange juice consumers. Conclusion: Long-term orange juice consumers had lower levels of total cholesterol, LDL-cholesterol, apo B and LDL/HDL ratio and an improvement of folate and vitamin C in their diet. © 2013 Aptekmann and Cesar; licensee BioMed Central Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background Apolipoprotein E (apoE) is a key component of the lipid metabolism. Polymorphisms at the apoE gene (APOE) have been associated with cardiovascular disease, lipid levels and lipid-lowering response to statins. We evaluated the effects on APOE expression of hypercholesterolemia, APOE ε2/ε3/ε4 genotypes and atorvastatin treatment in Brazilian individuals. The relationship of APOE genotypes and plasma lipids and atorvastatin response was also tested in this population. Methods APOE ε2/ε3/ε4 and plasma lipids were evaluated in 181 normolipidemic (NL) and 181 hypercholesterolemic (HC) subjects. HC individuals with indication for lowering-cholesterol treatment (n = 141) were treated with atorvastatin (10 mg/day/4-weeks). APOE genotypes and APOE mRNA in peripheral blood mononuclear cells (PBMC) were analyzed by TaqMan real time PCR. Results HC had lower APOE expression than NL group (p < 0.05) and individuals with low APOE expression showed higher plasma total and LDL cholesterol and apoB, as well as higher apoAI (p < 0.05). Individuals carrying ε2 allele have reduced risk for hypercholesterolemia (OR: 0.27, 95% I.C.: 0.08-0.85, p < 0.05) and NL ε2 carriers had lower total and LDL cholesterol and apoB levels, and higher HDL cholesterol than non-carriers (p < 0.05). APOE genotypes did not affect APOE expression and atorvastatin response. Atorvastatin treatment do not modify APOE expression, however those individuals without LDL cholesterol goal achievement after atorvastatin treatment according to the IV Brazilian Guidelines for Dyslipidemia and Atherosclerosis Prevention had lower APOE expression than patients with desirable response after the treatment (p < 0.05). Conclusions APOE expression in PBMC is modulated by hypercholesterolemia and the APOE mRNA level regulates the plasma lipid profile. Moreover the expression profile is not modulated neither by atorvastatin nor APOE genotypes. In our population, APOE ε2 allele confers protection against hypercholesterolemia and a less atherogenic lipid profile. Moreover, low APOE expression after treatment of patients with poor response suggests a possible role of APOE level in atorvastatin response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

LRP4, member of the LDLR family, is a multifunctional membrane-bound receptor that is expressed in various tissues. The expression of LRP4 by osteoblasts, its novel interaction with Wnt-signaling inhibitors Dkk1 and SOST, and the lower levels of activated beta-catenin in different bone locations described here, adds another player to the long list of established factors that modulate canonical Wnt-signaling in bone. By demonstrating that in addition to Wise, LRP4 is able to interact with two additional important modulators of Wnt- and BMP-signaling, our perspective of the complexity of the integration of BMP and Wnt-signaling pathways on the osteoblast surface has expanded further. Nevertheless the recently described association of both the SOST and LRP4 genes with BMD in humans, together with our findings suggest that LRP4 plays a physiologically important role in the skeletal development and bone metabolism not only in rodents, but in humans as well. The efficiency with which LRP4 binds both SOST and Dkk1, presumably at the osteoblastic surface, LRP4 may act as a sink and competes with LRP5/6 for the binding of these Wnt antagonists, which then are no longer available for suppression of the signal through the LRP5/6 axis. rnApoE, a 299 amino acid glycoprotein, is a crucial regulator in the uptake of triglyceride, phospholipids, cholesteryl esters, and cholesterol into cells. ApoE has been linked to osteoporosis, and such a role is further strengthened by the present of a high bone mass phenotype in ApoE null mice. Until recently, the effects of respective ApoE isoforms E2, E3, and E4, and their impact on bone metabolism, have been unclear. Here we report that respective human ApoE knockin mice display diverse effects on bone metabolism. ApoE2 mice show decreased trabecular bone volume per total volume in femoral bone and lumbar spine in comparison to ApoE3 and E4 animals. In this context, urinary bone resorption marker DPD is increased in these animals, which is accompanied by a low ratio of osteoclastogenesis markers OPG/RANKL. Interestingly, serum bone formation markers ALP and OCN are diminished in ApoE4 mice. In contrast to this finding, ApoE2 mice show the lowest bone formation of all groups in vivo. These findings cannot be explained by the low receptor-affinity of ApoE2 and subsequent decreased uptake of triglyceride-rich lipoproteins by osteoblasts, resulting in elevated levels of undercarboxylated osteocalcin. Thus, other crucial pathways relevant for bone metabolism, e. g. Wnt/beta-catenin-signaling pathways, must be, compared to the ApoE3/4 isoforms, more affected by the ApoE2 isoform.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: In humans, overproduction of apolipoprotein B (apoB) is positively associated with premature coronary artery diseases. To reduce the levels of apoB mRNA, we have designed an apoB mRNA-specific hammerhead ribozyme targeted at nucleotide sequences GUA6679 (RB15) mediated by adenovirus, which efficiently cleaves and decreases apoB mRNA by 80% in mouse liver and attenuates the hyperlipidemic condition. In the current study, we used an adeno-associated virus vector, serotype 2 (AAV2) and a self-complementary AAV2 vector (scAAV2) to demonstrate the effect of long-term tissue-specific gene expression of RB15 on the regulation apoB mRNA in vivo. METHODS: We constructed a hammerhead ribozyme RB15 driven by a liver-specific transthyretin (TTR) promoter using an AAV2 vector (rAAV2-TTR-RB15). HepG2 cells and hyperlipidemic mice deficient in both the low density lipoprotein receptor and the apoB mRNA editing enzyme genes (LDLR-/-Apobec1-/-; LDb) were transduced with rAAV2-TTR-RB15 and a control vector rAAV-TTR-RB15-mutant (inactive ribozyme). The effects of ribozyme RB15 on apoB metabolism and atherosclerosis development were determined in LDb mice at 5-month after transduction. A self-complementary AAV2 vector expressing ribozyme RB15 (scAAV2-TTR-RB15) was also engineered and used to transduce HepG2 cells. Studies were designed to compare the gene expression efficiency between rAAV2-TTR-RB15 and scAAV2-TTR-RB15. RESULTS: The effect of ribozyme RB15 RNA on reducing apoB mRNA levels in HepG2 cells was observed only on day-7 after rAAV2-TTR-RB15 transduction. And, at 5-month after rAAV2-TTR-RB15 treatment, the apoB mRNA levels in LDb mice were significantly decreased by 43%, compared to LDb mice treated with control vector rAAV2-TTR-RB15-mutant. Moreover, both the rAAV2-TTR-RB15 viral DNA and ribozyme RB15 RNA were still detectable in mice livers at 5-month after treatment. However, this rAAV2-TTR-RB15 vector mediated a prolonged but low level of ribozyme RB15 gene expression in the mice livers, which did not produce the therapeutic effects on alteration the lipid levels or the inhibition of atherosclerosis development. In contrast, the ribozyme RB15 RNA mediated by scAAV2-TTR-RB15 vector was expressed immediately at day-1 after transduction in HepG2 cells. The apoB mRNA levels were decreased 47% (p = 0.001), compared to the control vector scAAV2-TTR-RB15-mutant. CONCLUSION: This study provided evidence that the rAAV2 single-strand vector mediated a prolonged but not efficient transduction in mouse liver. However, the scAAV2 double-strand vector mediated a rapid and efficient gene expression in liver cells. This strategy using scAAV2 vectors represents a better approach to express small molecules such as ribozyme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives- We investigated whether apoE genotypes correlate with cognitive functions in clinically healthy persons. Methods - In 1993 and 1995, we measured information processing speed, delayed free recall and semantic aspects of long-term memory in 227 men and 105 women aged 65 and over, a randomly selected subsample of the prospective Basel Study. Cardiovascular risk factors and education were assessed. Results -E2 were more prevalent in old-old (>75 years, 23.5% vs 15%) compared to E4 than in young-old (<75 years, 19.3% vs 23.5%). Taking into account age and education, subjects with ɛ3/ɛ4 or ɛ4/ɛ4 alleles (E4) performed lowest in all 3 tests compared to those homozygous for ɛ3 (E3) or carriers of one or two ɛ2 alleles (E2) (reaction time P=0.009, free recall P=0.05, WAIS-R vocabulary P<0.05). In old-old there was a significant difference between E2 and E4 for reaction time (P=0.02) and free recall (P<0.02) but not for vocabulary (P=0.086). In all 3 groups there were no significant changes after 2 years. The subgroup with the genotype ɛ2/ɛ4 performed consistently best in the cognitive tests. Cholesterol was significantly increased in the E4 and E3 group compared to the E2 group. Conclusion - ApoE genotype correlates with cognitive performance. The increased prevalence of E2 in the old-old and the significantly lower plasma cholesterol levels suggest differential morbidity and mortality as important factors influencing the prevalence of cognitive disorders in late life.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plasma low-density lipoprotein (LDL) levels are positively correlated with the incidence of coronary artery disease. In the circulation, the plasma LDL clearance is mainly achieved by the uptake via LDL receptor (LDLR). Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a newly discovered gene, playing an important role in LDL metabolism. Gain-of-function mutations of PCSK9 lead to hypercholesterolemia and loss-of-function mutations of PCSK9 are associated with decrease of LDL cholesterol. The effects of PCSK9 on cholesterol levels are the consequence of a strong interaction between the catalytic domain of PCSK9 and epidermal growth factor-like repeat A (EGF-A) domain of LDLR on the cell surface of hepatocytes. This PCSK9/LDLR complex enters the cell via endocytosis, where both PCSK9 and LDLR are removed via the lysosome pathway, resulting in decreased levels of LDLR and accumulation of LDL in the plasma. However, whether this is the exclusive function of PCSK9 on LDL metabolism was challenged by us; we observed PCSK9 interacted with apolipoprotein B (apoB) and increased apoB production, irrespective of the LDLR. ApoB is the primary structure protein of LDL particle and it also serves as the ligand for the LDL receptor. There is ample evidence showing that the levels of apoB are a better indicator for heart disease than either total cholesterol or LDL cholesterol levels. We used a second-generation adenoviral vector to overexpress PCSK9 (Ad-PCSK9) in wild-type C57BL/6 and LDLR deficient mice (Ldlr-/- and Ldlr-/-Apobec1-/-). Our study revealed that overexpression of PCSK9 promoted the production and secretion of apoB in the form of very-low density lipoprotein (VLDL), which is the precursor of LDL, in the 3 mouse models studied (C57BL/6J, Ldlr-/-, and Ldlr-/-Apobec1-/-). The increased apoB production in mice was regulated at post-transcriptional levels, since there was no difference in apoB mRNA levels between mice treated with Ad-PCSK9 and control vector Ad-Null. By using pulse-chase experiment on primary hepatocytes, we showed that overexpression of PCSK9 increased the secretion of apoB, independent of LDLR. In the circulation, we showed that PCSK9 was associated with LDL particles. By using 3 different protein–protein interaction assays of co-immunoprecipitation, mammalian two-hybrid system, and in situ proximity ligation assay, we demonstrated a direct protein–protein interaction between PCSK9 and apoB. The impact of this interaction inhibited the physiological removal process of apoB via autophagosome/lysosome pathway in an LDLR-independent fashion, resulting in increased production and secretion of apoB-containing lipoproteins. The significance of this process was shown in the Pcsk9 knockout mice in the background of Ldlr-/-Apobec1-/- mice (triple knockout mice); in the absence of Pcsk9 (triple knockout mice) the levels of cholesterol, triacylglycerol, and apoB decreased significantly in comparison to that of Ldlr-/-Apobec1-/- mice. Taken together, our study demonstrated a direct intracellular interaction of PCSK9 with apoB, resulting in the inhibition of apoB degradation via the autophagosome/lysosome pathway independent of LDLR. This discovery provides a new concept of the importance of PCSK9 and suggests new approaches for the therapeutic intervention of hyperlipidemia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have generated mice with markedly elevated plasma levels of human low density lipoprotein (LDL) and reduced plasma levels of high density lipoprotein. These mice have no functional LDL receptors [LDLR−/−] and express a human apolipoprotein B-100 (apoB) transgene [Tg(apoB+/+)] with or without an apo(a) transgene [Tg(apoa+/−)]. Twenty animals (10 males and 10 females) of each of the following four genotypes were maintained on a chow diet: (i) LDLR−/−, (ii) LDLR−/−;Tg(apoa+/−), (iii) LDLR−/−;Tg(apoB+/+), and (iv)LDLR−/−;Tg(apoB+/+);Tg(apo+/−). The mice were killed at 6 mo, and the percent area of the aortic intimal surface that stained positive for neutral lipid was quantified. Mean percent areas of lipid staining were not significantly different between the LDLR−/− and LDLR−/−;Tg(apoa+/−) mice (1.0 ± 0.2% vs. 1.4 ± 0.3%). However, the LDLR−/−;Tg(apoB+/+) mice had ≈15-fold greater mean lesion area than the LDLR−/− mice. No significant difference was found in percent lesion area in the LDLR−/−;Tg(apoB+/+) mice whether or not they expressed apo(a) [18.5 ± 2.5%, without lipoprotein(a), Lp(a), vs. 16.0 ± 1.7%, with Lp(a)]. Histochemical analyses of the sections from the proximal aorta of LDLR−/−;Tg(apoB+/+) mice revealed large, complex, lipid-laden atherosclerotic lesions that stained intensely with human apoB-100 antibodies. In mice expressing Lp(a), large amounts of apo(a) protein colocalized with apoB-100 in the lesions. We conclude that LDLR−/−; Tg(apoB+/+) mice exhibit accelerated atherosclerosis on a chow diet and thus provide an excellent animal model in which to study atherosclerosis. We found no evidence that apo(a) increased atherosclerosis in this animal model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Apolipoprotein E- (apoE) deficient (E−/−) mice develop severe hyperlipidemia and diffuse atherosclerosis. Low-dose expression of a human apoE3 transgene in macrophages of apoE-deficient mice (E−/−hTgE+/0), which results in about 5% of wild-type apoE plasma levels, did not correct hyperlipidemia but significantly reduced the extent of atherosclerotic lesions. To investigate the contribution of apoE to reverse cholesterol transport, we compared plasmas of wild-type (E+/+), E−/−, and E−/−hTgE+/0 mice for the appearance of apoE-containing lipoproteins by electrophoresis and their capacity to take up and esterify 3H-labeled cholesterol from radiolabeled fibroblasts or J774 macrophages. Wild-type plasma displayed lipoproteins containing apoE that were the size of high density lipoprotein and that had either electrophoretic α or γ mobilities. Similar particles were also present in E−/−hTgE+/0 plasma. Depending on incubation time, E−/− plasma released 48–74% less 3H-labeled cholesterol from fibroblasts than E+/+ plasma, whereas cholesterol efflux into E−/−hTgE+/0 plasma was only 11–25% lower than into E+/+ plasma. E−/−hTgE+/0 plasma also released 10% more 3H-labeled cholesterol from radiolabeled J774 macrophages than E−/− plasma. E+/+ and E−/−hTgE+/0 plasma each esterified significantly more cell-derived 3H-labeled cholesterol than E−/− plasma. Moreover, E−/− plasma accumulated much smaller proportions of fibroblast-derived 3H-labeled cholesterol in fractions with electrophoretic γ and α mobility than E+/+ and E−/−hTgE+/0 plasma. Thus, low-dose expression of apoE in macrophages nearly restored the cholesterol efflux capacity of apoE-deficient plasma through the formation of apoE-containing particles, which efficiently take up cell-derived cholesterol, and through the increase of cholesterol esterification activity. Thus, macrophage-derived apoE may protect against atherosclerosis by increasing cholesterol efflux from arterial wall cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigated whether endothelin-1 (ET-1), a potent vasoconstrictor, which also stimulates cell proliferation, contributes to endothelial dysfunction and atherosclerosis. Apolipoprotein E (apoE)-deficient mice and C57BL/6 control mice were treated with a Western-type diet to accelerate atherosclerosis with or without ETA receptor antagonist LU135252 (50 mg/kg/d) for 30 wk. Systolic blood pressure, plasma lipid profile, and plasma nitrate levels were determined. In the aorta, NO-mediated endothelium-dependent relaxation, atheroma formation, ET receptor-binding capacity, and vascular ET-1 protein content were assessed. In apoE-deficient but not C57BL/6 mice, severe atherosclerosis developed within 30 wk. Aortic ET-1 protein content (P < 0.0001) and binding capacity for ETA receptors was increased as compared with C57BL/6 mice. In contrast, NO-mediated, endothelium-dependent relaxation to acetylcholine (56 ± 3 vs. 99 ± 2%, P < 0.0001) and plasma nitrate were reduced (57.9 ± 4 vs. 93 ± 10 μmol/liter, P < 0.01). Treatment with the ETA receptor antagonist LU135252 for 30 wk had no effect on the lipid profile or systolic blood pressure in apoE-deficient mice, but increased NO-mediated endothelium-dependent relaxation (from 56 ± 3 to 93 ± 2%, P < 0.0001 vs. untreated) as well as circulating nitrate levels (from 57.9 ± 4 to 80 ± 8.3 μmol/liter, P < 0.05). Chronic ETA receptor blockade reduced elevated tissue ET-1 levels comparable with those found in C57BL/6 mice and inhibited atherosclerosis in the aorta by 31% without affecting plaque morphology or ET receptor-binding capacity. Thus, chronic ETA receptor blockade normalizes NO-mediated endothelial dysfunction and reduces atheroma formation independent of plasma cholesterol and blood pressure in a mouse model of human atherosclerosis. ETA receptor blockade may have therapeutic potential in patients with atherosclerosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Apolipoprotein (apo) A-II is the second most abundant apolipoprotein in high density lipoprotein (HDL). To study its role in lipoprotein metabolism and atherosclerosis susceptibility, apo A-II knockout mice were created. Homozygous knockout mice had 67% and 52% reductions in HDL cholesterol levels in the fasted and fed states, respectively, and HDL particle size was reduced. Metabolic turnover studies revealed the HDL decrease to be due to both decreased HDL cholesterol ester and apo A-I transport rate and increased HDL cholesterol ester and apo A-I fractional catabolic rate. The apo A-II deficiency trait was bred onto the atherosclerosis-prone apo E-deficient background, which resulted in a surprising 66% decrease in cholesterol levels due primarily to decreased atherogenic lipoprotein remnant particles. Metabolic turnover studies indicated increased remnant clearance in the absence of apo A-II. Finally, apo A-II deficiency was associated with lower free fatty acid, glucose, and insulin levels, suggesting an insulin hypersensitivity state. In summary, apo A-II plays a complex role in lipoprotein metabolism, with some antiatherogenic properties such as the maintenance of a stable HDL pool, and other proatherogenic properties such as decreasing clearance of atherogenic lipoprotein remnants and promotion of insulin resistance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Apolipoprotein E (apoE) mediates the redistribution of lipids among cells and is expressed at highest levels in brain and liver. Human apoE exists in three major isoforms encoded by distinct alleles (ɛ2, ɛ3, and ɛ4). Compared with APOE ɛ2 and ɛ3, APOE ɛ4 increases the risk of cognitive impairments, lowers the age of onset of Alzheimer’s disease (AD), and decreases the response to AD treatments. Besides age, inheritance of the APOE ɛ4 allele is the most important known risk factor for the development of sporadic AD, the most common form of this illness. Although numerous hypotheses have been advanced, it remains unclear how APOE ɛ4 might affect cognition and increase AD risk. To assess the effects of distinct human apoE isoforms on the brain, we have used the neuron-specific enolase (NSE) promoter to express human apoE3 or apoE4 at similar levels in neurons of transgenic mice lacking endogenous mouse apoE. Compared with NSE-apoE3 mice and wild-type controls, NSE-apoE4 mice showed impairments in learning a water maze task and in vertical exploratory behavior that increased with age and were seen primarily in females. These findings demonstrate that human apoE isoforms have differential effects on brain function in vivo and that the susceptibility to apoE4-induced deficits is critically influenced by age and gender. These results could be pertinent to cognitive impairments observed in human APOE ɛ4 carriers. NSE-apoE mice and similar models may facilitate the preclinical assessment of treatments for apoE-related cognitive deficits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent epidemiological studies show a strong reduction in the incidence of Alzheimer's disease in patients treated with cholesterol-lowering statins. Moreover, elevated Aβ42 levels and the ɛ4 allele of the lipid-carrier apolipoprotein E are regarded as risk factors for sporadic and familial Alzheimer's disease. Here we demonstrate that the widely used cholesterol-lowering drugs simvastatin and lovastatin reduce intracellular and extracellular levels of Aβ42 and Aβ40 peptides in primary cultures of hippocampal neurons and mixed cortical neurons. Likewise, guinea pigs treated with high doses of simvastatin showed a strong and reversible reduction of cerebral Aβ42 and Aβ40 levels in the cerebrospinal fluid and brain homogenate. These results suggest that lipids are playing an important role in the development of Alzheimer's disease. Lowered levels of Aβ42 may provide the mechanism for the observed reduced incidence of dementia in statin-treated patients and may open up avenues for therapeutic interventions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have studied the effects of endogenous and exogenous estrogen on atherosclerotic lesions in apolipoprotein E-deficient mice. Female mice ovariectomized (OVX) at weaning displayed increases (P < 0.01) in fatty streak lesions in the proximal aorta and aortic sinus compared with female mice with intact ovarian function. These differences between the OVX and sham controls were apparent in both chow- and "Western-type" diet-fed mice. Moreover, increases in lesion size following OVX occurred without changes in plasma cholesterol. Hormone replacement with subdermal 17-beta-estradiol pellets releasing either 6, 14, or 28 micrograms/day significantly decreased (P < 0.001) atherosclerotic lesion area in both male and OVX female mice. In contrast, neither 17-alpha-estradiol (28 micrograms/day) or tamoxifen (85 micrograms/day) affected lesion progression in OVX female mice. In the Western diet-fed group, exogenous estradiol markedly reduced plasma cholesterol and triglycerides, whereas, in animals fed the chow diet, exogenous estrogen and tamoxifen treatment only decreased plasma and very low density lipoprotein triglycerides. However, lesion area was only weakly correlated with plasma cholesterol and triglycerides, 0.35 and 0.44 tau values, respectively (P < 0.01). In summary, in the apolipoprotein E-deficient mouse 17-beta-estradiol protects against atherosclerotic lesion formation, and this can only be partially explained through effects on plasma lipoprotein levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Apolipoprotein (apo)-B is found in two forms in mammals: apo-B100, which is made in the liver and the yolk sac, and apo-B48, a truncated protein made in the intestine. To provide models for understanding the physiologic purpose for the two forms of apo-B, we used targeted mutagenesis of the apo-B gene to generate mice that synthesize exclusively apo-B48 (apo-B48-only mice) and mice that synthesize exclusively apo-B100 (apo-B100-only mice). Both the apo-B48-only mice and apo-B100-only mice developed normally, were healthy, and were fertile. Thus, apo-B48 synthesis was sufficient for normal embryonic development, and the synthesis of apo-B100 in the intestines of adult mice caused no readily apparent adverse effects on intestinal function or nutrition. Compared with wild-type mice fed a chow diet, the levels of low density lipoprotein (LDL)-cholesterol and very low density lipoprotein- and LDL-triacylglycerols were lower in apo-B48-only mice and higher in the apo-B100-only mice. In the setting of apo-E-deficiency, the apo-B100-only mutation lowered cholesterol levels, consistent with the fact that apo-B100-lipoproteins can be cleared from the plasma via the LDL receptor, whereas apo-B48-lipoproteins lacking apo-E cannot. The apo-B48-only and apo-B100-only mice should prove to be valuable models for experiments designed to understand the purpose for the two forms of apo-B in mammalian metabolism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study examines the question of whether apolipoprotein E (apoE) alters steady-state concentrations of plasma cholesterol carried in low density lipoproteins (LDL-C) by acting as a competitive inhibitor of hepatic LDL uptake or by altering the rate of net cholesterol delivery from the intestinal lumen to the liver. To differentiate between these two possibilities, rates of cholesterol absorption and synthesis and the kinetics of hepatic LDL-C transport were measured in vivo in mice with either normal (apoE+/+) or zero (apoE-/-) levels of circulating apoE. Rates of cholesterol absorption were essentially identical in both genotypes and equaled approximately 44% of the daily dietary load of cholesterol. This finding was consistent with the further observation that the rates of cholesterol synthesis in the liver (approximately 2,000 nmol/h) and extrahepatic tissues (approximately 3,000 nmol/h) were also essentially identical in the two groups of mice. However, the apparent Michaelis constant for receptor-dependent hepatic LDL-C uptake was markedly lower in the apoE-/- mice (44 +/- 4 mg/dl) than in the apoE+/+ animals (329 +/- 77 mg/dl) even though the maximal transport velocity for this uptake process was essentially the same (approximately 400 micrograms/h per g) in the two groups of mice. These studies, therefore, demonstrate that apoE-containing lipoproteins can act as potent competitive inhibitors of hepatic LDL-C transport and so can significantly increase steady-state plasma LDL-C levels. This apolipoprotein plays no role, however, in the regulation of cholesterol absorption, sterol biosynthesis, or hepatic LDL receptor number, at least in the mouse.