860 resultados para Antioxidant activity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three sulphated polysaccharide derivatives (oversulphated, acetylated and benzoylated fucoidan) were successfully synthesized, and their antioxidant activities were investigated employing various established in vitro systems. A novel catalyst N-bromosuccinimide (NBS) was used in acetylation and benzoylation reaction, and the degree of acetylation was evaluated using IR and NMR spectra. Both fucoidan derivatives possessed considerable antioxidant activity, and had stronger antioxidant ability than fucoidan in certain tests. The benzoylated fucoidan showed strongest superoxide and hydroxyl radical scavenging activity, however, the acetylated fucoidan exhibited strongest activity on scavenging DPPH radical and reducing power. Available data obtained with in vitro models suggested that substituted groups of fucoidan played an important role on antioxidant activity. The mechanism on the antioxidant activity of sulphonyl, acetyl and benzoyl group is different. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three sulfated polysaccharide derivatives (phosphorylated and aminated fucoidan) were synthesized, and their potential antioxidant activities were investigated employing various established in vitro systems. Two methods were used in phosphorylation fucoidan: polyphosphoric acid and POCl3 method. Aminated fucoidan was prepared using the epichlorohydrin and ammonia water. All fucoidan derivatives possessed considerable antioxidant activity, and exhibited stronger antioxidant ability than fucoidan in certain tests. The phosphorylated fucoidan showed stronger hydroxyl radical and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity and reducing power. The mechanism on influence the antioxidant activity of samples of phosphate and amino group was indicated. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glucosamine sulfate was prepared from glucosamine hydrochloride that was produced by acidic hydrolysis of chitin by ion-exchange method. Optical rotation and elemental analysis characterized the degree of its purity. In addition, the antioxidant potency of chitosan derivative-glucosamine sulfate was investigated in various established in vitro systems, such as superoxide (O (2) (-) )/hydroxyl (center dot OH) radicals scavenging, reducing power, iron ion chelating. The following results are obtained: first, glucosamine sulfate had pronounced scavenging effect on superoxide radical. For example the O (2) (-) scavenging activity of glucosamine sulfate was 92.11% at 0.8 mg/mL. Second, the center dot OH scavenging activity of glucosamine sulfate was also strong, and was about 50% at 3.2 mg/mL. Third, the reducing power of glucosamine sulfate was more pronounced. The reducing power of glucosamine sulfate was 0.643 at 0.75 mg/mL. However, its potency for ferrous ion chelating was weak. Furthermore, except for ferrous ion chelating potency, the scavenging rate of radical and reducing power of glucosamine sulfate were concentration-dependent and increased with their increasing concentrations, but its ferrous ion chelating potency decreased with the increasing concentration. The multiple antioxidant activities of glucosamine sulfate were evidents of reducing power and superoxide/hydroxyl radicals scavenging ability. These in vitro results suggest the possibility that glucosamine sulfate could be used effectively as an ingredient in health or functional food, to alleviate oxidative stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Five kinds of Schiff bases of chitosan and carboxymethyl chitosan (CMCTS) have been prepared according to a previous method and the antioxidant activity was studied using an established system, such as superoxide and hydroxyl radical scavenging. Obvious differences between the Schiff bases of chitosan and CMCTS were observed, which might be related to contents of the active hydroxyl and amino groups in the molecular chains. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polysaccharide extracted from Ulva pertusa (Chlorophyta) is a group of sulfated heteropolysaccharide; for simplicity, the sulfated polysaccharide is referred to as ulvan in this paper. In this study, different sulfate content ulvans were prepared with sulfur trioxide/N,N-diinethylformamide (SO3-DMF) in formamide, and their antioxidant activities were investigated including scavenging activity of superoxide and hydroxyl radicals, reducing Power and metal chelating ability. As expected, we obtained several satisfying results, as follows: firstly, high sulfate content ulvans had more effective scavenging activity on hydroxyl radical than natural ulvan. Secondly, comparing with natural ulvan, high sulfate content ulvans exhibited stronger reducing power. Thirdly, HU4 (sulfate content, 30.8%) and HU5 (sulfate content, 32.8%) showed more pronounce chelating ability on ferrous ion at high concentration than other samples. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polysaccharides extracted from Ulva pertusa Kjellm ( Chlorophyta) are a group of sulfated heteropolysaccharides, the ulvans. In this study, different molecular weight ulvans were prepared by H2O2 degradation and their antioxidant activities investigated including superoxide and hydroxyl radical scavenging activity, reducing power and metal chelating ability. The molecular weights of natural and degraded ulvans were 151.7, 64.5, 58.0, and 28.2 kDa, respectively, as determined by high performance gel permeation chromatography. Among the four samples, U-3 ( the lowest molecular weight sample) showed significant inhibitory effects on superoxide and hydroxyl radicals with IC50 values of 22.1 mu g mL(-1) and 2.8 mg mL(-1); its reducing power and metal chelating ability were also the strongest among the four samples. All the other samples also demonstrated strong activity against superoxide radicals. The results indicated that molecular weight had a significant effect on the antioxidant activity of ulvan with low molecular weight ulvan having stronger antioxidant activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Differently regioselective chitosan sulfates were prepared according to Hanno Baumann's methods. Their antioxidant potencies were investigated employing various established in vitro systems, such as 1,1-diphenyl-2-picrylhydrazyl (DPPH)/superoxide/hydroxyl radicals scavenging, reducing power, iron ion chelating and total antioxidant activity. All kinds of sulfated chitosans (HCTS, TSCTS, SCTS, TCTS) showed strong inhibitory activity toward superoxide radical by the PMS-NADH system compared to Vc. According to the above-mentioned order their IC50 were 0.012, 0.040, 0.015, 0.022mg/mL, respectively, however, scavenging activity of Vc on superoxide radical was 68.19% at 2.0mg/mL. Scavenging activity of superoxide radical was found to be in the order of HCTS > SCTS > TCTS > TSCTS > Vc. Furthermore, all kinds of sulfated chitosans exhibited strong concentration-dependent inhibition of deoxyribose oxidation. Except for HCTS, others had stronger scavenging activity on hydroxyl radical than Vc. Scavenging effect of TSCTS on 1, 1 -diphenyl-2-picrylhydrazy] radical was little lower than that of BHA, but better than that of others. All kinds of sulfated chitosans were efficient in the reducing power, especially TSCTS. TSCTS and TCTS showed considerable ferrous ion chelating potency. The data obtained in vitro models clearly establish the antioxidant potency of all kinds of sulfated chitosans. These in vitro results suggested the possibility that sulfated chitosans could be effectively employed as ingredient in health or functional food, to alleviate oxidative stress. However, comprehensive studies need to be conducted to ascertain the in vivo safety of sulfated chitosans in experimental animal models. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of molecular weight and substitution degree of sulfated polysaccharides on their biological activity is considered in majority of works involving the anticoagulant or antiviral properties of these substances. Therefore, the present paper describes the effect of preparation conditions of sulfated chitosans on their molecular weight and sulfur content, such as different reaction time, acid solvent and temperature. Foregoing literature expounded the action of dichloroacetic acid (DCAA) as acid solvent in homogeneous reaction. However, DCAA is expensive and noxious, therefore, in the present paper cheap and non-noxious formic acid (88%) was in place of DCAA. Furthermore, during reaction formic acid was not dehydrated. Under formic acid we obtained the satisfying results that was higher yield and equivalent sulfur contents compared to DCAA. IR and C-13 NMR spectrums proved the structure of the resultant obtained under formic acid or DCAA to be same. Now, it has not been reported for formic acid as acid solvent in homogeneous reaction of chitosan sulfatation. In this present paper, we also determined antioxidant activity of high-molecular weight and high-sulfate-content chitosans (HCTS). The results showed that HCTS could scavenge superoxide and hydroxyl radical. Its IC50 is 0.012 and 3.269 mg/mL, respectively. It had obviously reducing power and slight chelating activity. The data obtained in in vitro models clearly establish the antioxidant potency of HCTS. It is a potential antioxidant in vitro. (C) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present paper microwave radiation has been used to introduce N-sulfo and O-sulfo groups into chitosan with a thigh degree of substitution and low-molecular weight. The sulfation of chitosan was performed in microwave ovens. It was found that microwave heating is a convenient way to obtain a wide range of products of different degrees of substitution and molecular weight only by changing reaction time or/and radiation power. Moreover, microwave radiation accelerated the degradation of sulfated chitosan, and the molecular weight of sulfated chitosan was considerably lower than that obtained by traditional heating. There are no differences in the chemical structure of sulfated chitosan obtained by microwave and by conventional technology. FTIR and C-13 NMR spectral analyses demonstrated that a significantly shorter time is required to obtain a satisfactory degree of substitution and molecular weight by microwave radiation than by conventional technology. In this present paper, we also determined antioxidant activity of low-molecular-weight and high-sulfate-content chitosans (LCTS). The results showed LCTS could scavenge superoxide and hydroxyl radical. Its IC50 is 0.025 and 1.32mg/mL, respectively. It is a potential antioxidant in vitro. (C) 2004 Published by Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sulfated galactan fraction F1 isolated from the red seaweed, Porphyra haitanensis, showed typical porphyran structure. It has a linear backbone of alternating 3-linked beta-D-galactosyl units and 4-linked alpha-L-galactosyl 6-sulfate and 3,6-anhydro-alpha-L-galactosyl units. The L-residues are mainly composed of alpha-L-galactosyl 6-sulfate units, and the 3,6-anhydrogalactosyl units are minor. Partial methylation occurred at the C-6 position of the D-galactosyl units and at the C-2 position of the 3,6-anhydro-alpha-L-galactosyl units. Intraperitoneal administration of F1 significantly decreased the lipid peroxidation in aging mice. F1 treatment increased the total antioxidant capacity and the activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in aging mice. The results indicated that F1 had significant in vivo antioxidant activity. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sulfated polysaccharide fraction F2 from Porphyra haitanesis (Rhodephyta) showed inhibitory effect on the in vitro lipid peroxidation. In the present study, the age-related changes in the antioxidant enzyme activity, lipid peroxidation, and total antioxidant capacity (TAOC) in different organs in mice were investigated and the in vivo antioxidant effect of F2 in aging mice was checked. Increased endogenous lipid peroxidation and decreased TAOC were observed in aging mice. Intraperitoneal administration of F2 significantly decreased the lipid peroxidation in a dose-dependent manner. F2 treatment increased TAOC and the activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in all the organs tested in aging mice. It is concluded that the sulfated polysaccharide fraction F2 can be used in compensating the decline in TAOC and the activities of antioxidant enzymes and thereby reduces the risks of lipid peroxidation. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three new kinds of 1,3,5-thiadiazine-2-thi one derivatives of chitosan with two different molecular weight (SATTCS1, SATTCS2, TITTCS1, TITTCS2, CITTCS1 and CITTCS2) have been prepared. Their structures were characterized by IR spectroscopy. The substitution degree of derivatives calculated by elemental analyses was 0.47, 0.42, 0.41, 0.38, 0.41 and 0.36, respectively. The result shows that substitution degree of derivatives was higher with lower molecular weight. The antioxidant activity was studied using an established system, such as bydroxyl radical scavenging, superoxide radical scavenging and reducing power. Antioxidant activity of the 1,3,5-thiadiazine-2-thione derivatives of chitosan were stronger than that of chitosans and antioxiclant activity of low molecular weight derivatives were stronger than that of high molecular weight derivatives. It is a potential antioxidant in vitro. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fucoidan, a group of sulfated heteropolysaccharide, was extracted from Laminaria japonica, an important economic alga species in China. Three sulfated polysaccharide fractions (F1, F2, and F3) were successfully isolated through anion-exchange column chromatography and had their antioxidant activities investigated employing various established in vitro systems, including superoxide and hydroxyl radical scavenging activity, chelating ability, and reducing power. Chemical analysis suggested that F1 and F3 were heteropolysaccharide in which galactose was the major component, while F2 was a typical fucoidan. All fractions possessed considerable antioxidant activity, and F1, F2 and F3 had stronger antioxidant ability than fucoidan in certain tests. The correlation between the sulfate content and scavenging superoxide radical ability was positive. Available data obtained with in vitro models suggested that the ratio of sulfate content/fucose was an effective indicator to antioxidant activity of the samples. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chitosan (CS) with two different molecular weights was modified by reacting with 4-hydroxyl-5-chloride-1,3-benzene-disulfo-chloride or 2-hydroxyl-5-chloride-1,3-benzene-disulfo-chloride to give new 2-(4(or 2)-hydroxyl-5-chloride-1,3-benzene-di-sulfanimide)-chitosan (2-HCBSAHCS, 2-HCBSALCS, 4-HCBSAHCS, 4-HCBSALCS). The structure of the derivatives was characterized by FT-IR and C-13 NMR spectroscopy. The antioxidant activities of the derivatives were investigated employing various established systems, such as hydroxyl radical ((OH)-O-center dot)/superoxide anion (O-2(radical anion)) scavenging/reducing power and chelating activity. All the derivatives showed stronger scavenging activity on hydroxyl radical than chitosan and ascorbic acid (Vc), and IC50 of 4-HCBSAHCS, 4-HCBSALCS, 2-HCBSAHCS and 2-HCBSALCS was 0.334, 0.302, 0.442, 0.346 mg/mL, respectively. The inhibitory activities of the derivatives toward superoxide radical by the PMS-NADH system were strong. The results showed that the superoxide radical scavenging effect of 2-(4(or 2)-hydroxyl-5-chloride-1,3-benzene-disulfanimide)-chitosan was higher than chitosan. The derivatives had obviously reducing power and slight chelating activity. The data obtained in in vitro models clearly establish the antioxidant potency of 2-(4(or 2)-hydroxyl-5-chloride-1,3-benzene-disulfanimide)-chitosan. (C) 2007 Elsevier Masson SAS. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chitosan (CS) and chitosan sulfates (CSS) with different molecular weight (Mw) were reacted with 4-acetamidobenzene sulfonyl chloride to obtain sulfanilamide derivatives of chitosan and chitosan sulfates (LSACS, HSACS, LSACSS, HSACSS). The preparation conditions such as different reaction time, temperature, solvent, and the molar ratio of reaction materials are discussed in this paper. Their structures were characterized by FTIR spectroscopy and elemental analyses. The antioxidant activities of the derivatives were investigated employing various established in vitro systems, such as hydroxyl-radical (OH) superoxide anion (O-2(center dot-)) scavenging and reducing power. All kinds of the compounds (HCS, LCS, HCSS, LCSS, HSACS, LSACS, HSACSS, LSACSS) showed stronger scavenging activity on hydroxyl radical than ascorbic acid (Vc). The inhibitory activities of the derivatives toward superoxide radical by the PMS-NADH system were obvious. The experiment showed that the superoxide radical scavenging effect of sulfanilamide derivatives of chitosan and chitosan sulfates was stronger than that of original CS and CSS. All of the derivatives were efficient in the reducing power. The results indicated that the sulfanilamide group were grafted on CS and CSS increased the reducing power of them obviously. (c) 2007 Elsevier Ltd. All rights reserved.