912 resultados para Antioxidant Enzyme
Resumo:
The involvement of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase in radiobiological processes has been described at the enzyme activity level. We irradiated radiation-resistant (RR) and radiation-sensitive (RS) mice and studied antioxidant enzymes at the transcriptional and activity level. In addition, aromatic hydroxylation and lipid peroxidation parameters were determined to study radiation resistance at the oxidation level. RS BALB/c/J Him mice and RR C3H He/Him mice were whole-body-irradiated with x-rays at 2, 4, and 6 Gy and killed 5, 15, and 30 min after irradiation. mRNA was isolated from liver and hybridized with probes for antioxidant enzymes and β-actin as a housekeeping gene control. Antioxidant enzyme activities were determined by standard assays. Parameters for aromatic hydroxylation (o-tyrosine) and lipid peroxidation (malondialdehyde) were determined by HPLC methods. Antioxidant transcription was unchanged in contrast to antioxidant activities; SOD and CAT activities were elevated within 15 min in RR animals but not in RS mice, at all doses studied. Glutathione peroxidase activity was not different between RR and RS mice and was only moderately elevated after irradiation. No significant differences were found between RR and RS animals at the oxidation level, although a radiation dose-dependent increase of oxidation products was detected in both groups. We found that ionizing irradiation led to increased antioxidant activity only minutes after irradiation in the absence of increased transcription of these antioxidant enzymes. RR animals show higher antioxidant enzyme activities than do RS mice, but oxidation products are comparable in RS and RR mice. As unchanged transcription of antioxidant enzymes could not have been responsible for the increased antioxidant enzyme activities, preformed antioxidant enzymes should have been released by the irradiation process. This would be in agreement with previous studies of preformed, stored SOD. The finding of higher SOD and CAT activities in RR than in RS animals could point to a role for these antioxidant enzymes for the process of radiation sensitivity.
Resumo:
Leaves of two barley (Hordeum vulgare L.) isolines, Alg-R, which has the dominant Mla1 allele conferring hypersensitive race-specific resistance to avirulent races of Blumeria graminis, and Alg-S, which has the recessive mla1 allele for susceptibility to attack, were inoculated with B. graminis f. sp. hordei. Total leaf and apoplastic antioxidants were measured 24 h after inoculation when maximum numbers of attacked cells showed hypersensitive death in Alg-R. Cytoplasmic contamination of the apoplastic extracts, judged by the marker enzyme glucose-6-phosphate dehydrogenase, was very low (less than 2%) even in inoculated plants. Dehydroascorbate, glutathione, superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase, monodehydroascorbate reductase, and dehydroascorbate reductase were present in the apoplast. Inoculation had no effect on the total foliar ascorbate pool size or the redox state. The glutathione content of Alg-S leaves and apoplast decreased, whereas that of Alg-R leaves and apoplast increased after pathogen attack, but the redox state was unchanged in both cases. Large increases in foliar catalase activity were observed in Alg-S but not in Alg-R leaves. Pathogen-induced increases in the apoplastic antioxidant enzyme activities were observed. We conclude that sustained oxidation does not occur and that differential strategies of antioxidant response in Alg-S and Alg-R may contribute to pathogen sensitivity.
Resumo:
In oligotrophic waters the light spectrum is mostly blue, and therefore the physiological and biochemical responses to blue light occurring in the coral tissue and in the symbiotic algae are important. Examination of the wavelength dependence of two free radical scavenger enzyme activity revealed an increase in activity in the blue light range (440-480 nm) compared to the red (640680 nm) in the full visible light (400-700 nm) range. These data show for the first time the relationship between the action spectra of photosynthesis and the activity of two main antioxidant enzymes in the symbiotic coral Favia favus. It was found that in the animal (host) the enzyme response to the spectral distribution of light was higher than that of the zooxanthellae, probably due to accumulation of free radicals within the host tissue. Furthermore, we found that the activity of these enzymes is affected in nature by the length of the day and night, and in the laboratory, by the duration of the illumination. Changes in the pigment concentrations were also observed in response to growth under the blue region and the whole PAR spectrum, while fluorescence measurements with the fast repetition rate fluorometer (FRRF) showed a decrease in the sigma cross section and a decrease in the quantum yield also in the blue part of the spectrum. These changes of scavenger enzymes activity, pigment concentration and fluorescence yield at different light spectra are vital in acclimatization and survival of corals in shallow water environments with high light radiation. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Erythrocytes transport oxygen to tissues and exercise-induced oxidative stress increases erythrocyte damage and turnover. Increased use of antioxidant supplements may alter protective erythrocyte antioxidant mechanisms during training. Aim of study: To examine the effects of antioxidant supplementation, (alpha-lipoic acid and a-tocopherol) and/or endurance training on the antioxidant defenses of erythrocytes. Methods: Young male Wistar rats were. assigned to (1) sedentary; (2) sedentary and antioxidant-supplemented; (3) endurance-trained; or (4) endurance-trained and antioxidant-supplemented groups for 14 weeks. Erythrocyte superoxide dismutase (SOD), glutathione peroxidase (GPX), and catalase (CAT) activities, and plasma malondialdehyde (MDA) were then measured. Results: Antioxidant supplementation had no significant effect (p > 0.05) on activities of antioxidant enzymes in sedentary animals. Similarly, endurance training alone also bad no effect (p > 0.05). GPX (125.9 2.8 vs. 121.5 3.0 U.gHb(-1), p < 0.05) and CAT (6.1 0.2 vs. 5.6 0.2 U.mgHb-1, p < 0.05) activities were increased in supplemented trained animals compared to non-supplemented sedentary animals whereas SOD (61.8 4.3 vs. 52.0 5.2 U.mgHb(-1), p < 0.05) activity was decreased. Plasma MDA was not different among groups (p > 0.05). Conclusions: In a rat model, the combination of exercise training and antioxidant supplementation increased antioxidant enzyme activities (GPX, CAT) compared with each individual intervention.
Resumo:
Background - Cancer cachexia is the progressive loss of skeletal muscle protein that contributes significantly to cancer morbidity and mortality. Evidence of antioxidant attenuation and the presence of oxidised proteins in patients with cancer cachexia indicate a role for oxidative stress. The level of oxidative stress in tissues is determined by an imbalance between reactive oxygen species production and antioxidant activity. This study aimed to investigate the superoxide generating NADPH oxidase (NOX) enzyme and antioxidant enzyme systems in murine adenocarcinoma tumour-bearing cachectic mice. Methods - Superoxide levels, mRNA levels of NOX enzyme subunits and the antioxidant enzymes superoxide dismutase (SOD), glutathione peroxidise (GPx) and catalase was measured in the skeletal muscle of mice with cancer and cancer cachexia. Protein expression levels of NOX enzyme subunits and antioxidant enzyme activity was also measured in the same muscle samples. Results - Superoxide levels increased 1.4-fold in the muscle of mice with cancer cachexia, and this was associated with a decrease in mRNA of NOX enzyme subunits, NOX2, p40phox and p67phox along with the antioxidant enzymes SOD1, SOD2 and GPx. Cancer cachexia was also associated with a 1.3-fold decrease in SOD1 and 2.0-fold decrease in GPx enzyme activity. Conclusion - Despite increased superoxide levels in cachectic skeletal muscle, NOX enzyme subunits, NOX2, p40phox and p67phox, were downregulated along with the expression and activity of the antioxidant enzymes. Therefore, the increased superoxide levels in cachectic skeletal muscle may be attributed to the reduction in the activity of endogenous antioxidant enzymes.
Resumo:
This study compares the antioxidant and antimicrobial transcriptional expression of blue shrimps reared according to two different systems, BioFloc Technology (BFT) and Clear sea Water (CW) and their differential responses when facing an experimental sublethal hydrogen peroxide stress. After 30 days of rearing, juvenile shrimps were exposed to H2O2 stress at a concentration of 30 ppm during 6 hours. The oxidative stress caused by H2O2 was examined in the digestive glands of the shrimp, in which antioxidant enzyme (AOE) and antimicrobial peptide (AMP) gene expression were analysed by quantitative real-time PCR. Results showed that rearing conditions did not affect the expression of genes encoding AOEs or AMPs. However, H2O2 stress induced a differential response in expression between shrimps from the two rearing treatments (BFT and CW). Comparative analysis of the expression profiles indicates that catalase transcripts were significantly upregulated by H2O2 stress for BFT shrimps while no change was observed for CW shrimps. In contrast, H2O2 caused down-regulation of superoxide dismutase and glutathione transferase transcripts and of the three AMP transcripts studied (penaeidin 2 and 3, and crustin) for CW shrimps, while no effect was observed on BFT shrimp transcript levels. These results suggested that BFT shrimps maintained antioxidant and AMP responses after stress and therefore can effectively protect their cells against oxidative stress, while CW shrimp immune competence seems to decrease after stress.
Resumo:
Objective- This study investigated whether differences exist in atherogen-induced migratory behaviors and basal antioxidant enzyme capacity of vascular smooth muscle cells (VSMC) from human coronary (CA) and internal mammary (IMA) arteries. Methods- Migration experiments were performed using the Dunn chemotaxis chamber. The prooxidant [NAD(P)H oxidase] and antioxidant [NOS, superoxide dismutase, catalase and glutathione peroxidase] enzyme activities were determined by specific assays. Results- Chemotaxis experiments revealed that while both sets of VSMC migrated towards platelet-derived growth factor-BB (1-50 ng/ml) and angiotensin II (1-50 nM), neither oxidized-LDL (ox-LDL, 25-100 ïÂ�Âg/ml) nor native LDL (100 ïÂ�Âg/ml) affected chemotaxis in IMA VSMC. However, high dose ox-LDL produced significant chemotaxis in CA VSMC that was inhibited by pravastatin (100 nM), mevastatin (10 nM), losartan (10 nM), enalapril (1 ïÂ�ÂM), and MnTBAP (a free radical scavenger, 50ïÂ� ïÂ�ÂM). Microinjection experiments with isoprenoids i.e. geranylgeranylpyrophosphate (GGPP) and farnesylpyrophosphate (FPP) showed distinct involvement of small GTPases in atherogen-induced VSMC migration. Significant increases in antioxidant enzyme activities and nitrite production along with marked decreases in NAD(P)H oxidase activity and O2 .- levels were determined in IMA versus CA VSMC. Conclusions- Enhanced intrinsic antioxidant capacity may confer on IMA VSMC resistance to migration against atherogenic agents. Drugs that regulate ox-LDL or angiotensin II levels also exert antimigratory effects.
Resumo:
We examined the influence of 3 consecutive days of high-intensity cycling on blood and urinary markers of oxidative stress. Eight highly-trained male cyclists (VO2 max 76 +/- 4 mL.kg-1.min-1; mean +/- SD) completed an interval session (9 exercise bouts lasting 30 s each, at 150% peak power output) on day 1, followed by 2 laboratory-simulated 30 km time trials on days 2 and 3. The cyclists also completed a submaximal exercise trial matched to the interval session for oxygen consumption. Blood was collected pre- and post-exercise for the determination of malondialdehyde (MDA), total antioxidant status (TAS), vitamin E, and the antioxidant enzyme activity of superoxide dismutase and glutathione peroxidase, while urine was collected for the determination of allantoin. There were significant increases in plasma MDA concentrations (p < 0.01), plasma TAS (p < 0.01), and urinary allantoin excretion (p < 0.01) following the high-intensity interval session on day 1, whereas plasma vitamin E concentration significantly decreased (p = 0.028). Post-exercise changes in plasma MDA (p = 0.036), TAS concentrations (p = 0.039), and urinary allantoin excretion (p = 0.031) were all significantly attenuated over the 3 consecutive days of exercise, whereas resting plasma TAS concentration was elevated. There were no significant changes in plasma MDA, TAS, or allantoin excretion following submaximal exercise and there were no significant changes in antioxidant enzyme activity over consecutive days of exercise or following submaximal exercise. Consecutive days of high-intensity exercise enhanced resting plasma TAS concentration and reduced the post-exercise increase in plasma MDA concentrations.
Resumo:
Introduction: Training for and competing in ultraendurance exercise events is associated with an improvement in endogenous antioxidant defenses as well as increased oxidative stress. However, consequences on health are currently unclear. Purpose: We aimed to examine the impact of training- and acute exercise-induced changes in the antioxidant capacity on the oxidant/antioxidant balance after an ironman triathlon and whether there are indications for sustained oxidative damage. Methods: Blood samples were taken from 42 well-trained male triathletes 2 d before an ironman triathlon, then immediately postrace, 1, 5, and 19 d later. Blood was analyzed for conjugated dienes (CD), malondialdehyde (MDA), oxidized low-density lipoprotein (oxLDL), oxLDL:LDL ratio, advanced oxidation protein products (AOPP), AOPP:total protein (TP) ratio, Trolox equivalent antioxidant capacity (TEAC), uric acid (UA) in plasma, and activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) in erythrocytes. Results: Immediately postrace, there were significant increases in CD, AOPP, TEAC, UA (for all P < 0.001), and AOPP:TP (P < 0.01). MDA rose significantly (P < 0.01) 1 d postrace, whereas CD (P < 0.01), AOPP (P = 0.01), AOPP:TP (P < 0.05), and TEAC (P < 0.001) remained elevated. OxLDL:LDL trended to increase, whereas oxLDL significantly (P < 0.01) decreased 1 d postrace. Except for GSH-Px (P = 0.08), activities of SOD (P < 0.001) and CAT (P < 0.05) significantly decreased postrace. All oxidative stress markers had returned to prerace values 5 d postrace. Furthermore, several relationships between training status and oxidative stress markers, TEAC, and antioxidant enzyme activities were noted. Conclusions: This study indicates that despite a temporary increase in most (but not all) oxidative stress markers, there is no persistent oxidative stress in response to an ironman triathlon, probably due to training- and exercise-induced protective alterations in the antioxidant defense system.
Resumo:
In order to understand the physiological response of oilseed rape (Brassica napus L.) leaves to cadmium (Cd) stress and exploit the physiological mechanisms involved in Cd tolerance, macro-mineral and chlorophyll concentrations, reactive oxygen species (ROS) accumulation, activities of enzymatic antioxidants, nonenzymatic compounds metabolism, endogenous hormonal changes, and balance in leaves of oilseed rape exposed to 0, 100, or 200 μM CdSO4 were investigated. The results showed that under Cd exposure, Cd concentrations in the leaves continually increased while macro-minerals and chlorophyll concentrations decreased significantly. Meanwhile, with increased Cd stress, superoxide anion (O 2 • − ) production rate and hydrogen peroxide (H2O2) concentrations in the leaves increased significantly, which caused malondialdehyde (MDA) accumulation and oxidative stress. For scavenging excess accumulated ROS and alleviating oxidative injury in the leaves, the activity of enzymatic antioxidants, such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), was increased significantly at certain stress levels. However, with increased Cd stress, the antioxidant enzyme activities all showed a trend towards reduction. The nonenzymatic antioxidative compounds, such as proline and total soluble sugars, accumulated continuously with increased Cd stress to play a long-term role in scavenging ROS. In addition, ABA levels also increased continuously with Cd stress while ZR decreased and the ABA/ZR ratio increased, which might also be providing a protective role against Cd toxicity.
Resumo:
Various endogenous and exogenous factors have been reported to increase the risk of breast cancer. Many of those are related to prolonged lifetime exposure to estrogens. Furthermore, a positive family history of breast cancer and certain benign breast diseases are known to increase the risk of breast cancer. The role of lifestyle factors, such as use of alcohol and smoking has been an area of intensive study. Alcohol has been found to increase the risk of breast cancer, whereas the role of smoking has remained obscure. A multitude of enzymes are involved in the metabolism of estrogens and xenobiotics including the carcinogens found in tobacco smoke. Many of the metabolic enzymes exhibit genetic polymorphisms that can lead to inter-individual differences in their abilities to modify hazardous substrates. Therefore, in presence of a given chemical exposure, one subgroup of women may be more susceptible to breast carcinogenesis, since they carry unfavourable forms of the polymorphic genes involved in the metabolism of the chemical. In this work, polymorphic genes encoding for cytochrome P450 (CYP) 1A1 and 1B1, N-acetyl transferase 2 (NAT2), sulfotransferase 1A1 (SULT1A1), manganese superoxide dismutase (MnSOD) and vitamin D receptor (VDR) were investigated in relation to breast cancer susceptibility in a Finnish population. CYP1A1, CYP1B1 and SULT1A1 are involved in the metabolism of both estrogens and xenobiotics, whereas NAT2 is involved only in the latter. MnSOD is an antioxidant enzyme protecting cells from oxidative damage. VDR, in turn, mediates the effects of the active form of vitamin D (1,25(OH)2D3, calcitriol) on maintenance of calcium homeostasis and it has anti-proliferative effects in many cancer cells. A 1.3-fold (95% CIs 1.01-1.73) increased risk of breast cancer was seen among women who carried the NAT2 slow acetylator genotype and a 1.5-fold (95% CI 1.1-2.0) risk was found in women with a MnSOD variant A allele containing genotypes compared to women with the NAT2 rapid acetylator genotype or to those with the MnSOD VV genotype, respectively. Instead, women with the VDR a allele containing genotypes were found to be at a decreased risk for breast cancer (OR 0.73; 95% CI 0.54-0.98) compared to women with the AA genotype. No significant overall associations were found between SULT1A1 or CYP genotypes and breast cancer risk, whereas a combination of the CYP1B1 432Val allele containing genotypes with the NAT2 slow acetylator genotypes posed a 1.5-fold (95% CI 1.03-2.24) increased risk. Moreover, NAT2 slow acetylator genotype was found to be confined to women with an advanced stage of breast cancer (stages III and IV). Further evidence for the association of xenobiotic metabolising genes with breast cancer risk was found when active smoking was taken into account. Women who smoked less than 10 cigarettes/day and carried at least one CYP1B1 432Val variant allele, were at 3.1-fold (95% CI 1.32-7.12) risk of breast cancer compared to women who smoked the same amount but did not carry the variant allele. Furthermore, the risk was significantly increased with increasing number of the CYP1B1 432Val alleles (p for trend 0.005). In addition, women who smoked less than 5 pack-years and carried the NAT2 slow acetylator genotype were at a 2.6-fold (95% CI 1.01-6.48) increased risk of breast cancer compared to women who smoked the same amount but carried the NAT2 rapid acetylator genotype. Furthermore, the combination of the CYP1B1 432Val allele and the NAT2 slow acetylator genotype increased the risk of breast cancer by 2.5-fold (95% CI 1.11-5.45) among ever smokers. Instead, the MnSOD A allele was found to be a risk factor among postmenopausal long-term smokers (>15 years of smoking) (OR 5.1; 95% CI 1.4-18.4) or among postmenopausal women who had smoked more than 10 cigarettes/day (OR 5.5; 95% CI 1.3-23.4) compared to women who had similar smoking habits but carried the MnSOD V/V genotype. Similarly, within subgroups of postmenopausal women who were using oral contraceptives, hormone replacement therapy or alcohol, women carrying the MnSOD A allele genotypes seemed to be at increased risk of breast cancer compared to women with the MnSOD V/V genotype. A positive family history of breast cancer and high parity were shown to be inversely associated with breast cancer risk among women carrying the VDR ApaI a allele or among premenopausal women carrying the SULT1A1*2 allele, respectively.
Resumo:
The importance of selenium as an essential trace element is now well recognized. In proteins, the redox-active selenium moiety is incorporated as selenocysteine (Sec), the 21st amino acid. In mammals, selenium exerts its redox activities through several selenocysteine-containing enzymes, which include glutathione peroxidase (GPx), iodothyronine deiodinase (ID), and thioredoxin reductase (TrxR). Although these enzymes have Sec in their active sites, they catalyze completely different reactions and their substrate specificity and cofactor or co-substrate systems are significantly different. The antioxidant enzyme GPx uses the tripeptide glutathione (GSH) for the catalytic reduction of hydrogen peroxide and organic peroxides, whereas the larger and more advanced mammalian TrxRs have cysteine moieties in different subunits and prefer to utilize these internal cysteines as thiol cofactors for their catalytic activity. On the other hand, the nature of in vivo cofactor for the deiodinating enzyme ID is not known, although the use of thiols as reducing agents has been well-documented. Recent studies suggest that molecular recognition and effective binding of the thiol cofactors at the active site of the selenoenzymes and their mimics play crucial roles in the catalytic activity. The aim of this perspective is to present an overview of the thiol cofactor systems used by different selenoenzymes and their mimics.
Resumo:
Background: This study was performed to understand the possible therapeutic activity of Terminalia paniculata ethanolic extract (TPEE) on non alcoholic fatty liver in rats fed with high fat diet. Methods: Thirty six SD rats were divided into 6 groups (n = 6): Normal control (NC), high fat diet (HFD), remaining four groups were fed on HFD along with different doses of TPEE (100,150 and 200 mg/kg b.wt) or orlistat, for ten weeks. Liver tissue was homogenized and analyzed for lipid profiles, activities of superoxide dismutase (SOD), catalase (CAT) and malondialdehyde (MDA) content. Further, the expression levels of FAS and AMPK-1 alpha were also studied in addition to histopathology examination of liver tissue in all the groups. Results: HFD significantly increased hepatic liver total cholesterol (TC), triglycerides (TG), free fatty acids (FFA) and MDA but decreased the activities of SOD and CAT which were subsequently reversed by supplementation with TPEE in a dose-dependent manner. In addition, TPEE administration significantly down regulated hepatic mRNA expression of FAS but up regulated AMPK-1 alpha compared to HFD alone fed group. Furthermore, western blot analysis of FAS has clearly demonstrated decreased expression of FAS in HFD + TPEE (200 mg/kg b. wt) treated group when compared to HFD group at protein level. Conclusions: Our biochemical studies on hepatic lipid profiles and antioxidant enzyme activities supported by histological and expression studies suggest a potential therapeutic role for TPEE in regulating obesity through FAS.
Resumo:
Redox imbalance generates multiple cellular damages leading to oxidative stress-mediated pathological conditions such as neurodegenerative diseases and cancer progression. Therefore, maintenance of reactive oxygen species (ROS) homeostasis is most important that involves well-defined antioxidant machinery. In the present study, we have identified for the first time a component of mammalian protein translocation machinery Magmas to perform a critical ROS regulatory function. Magmas overexpression has been reported in highly metabolically active tissues and cancer cells that are prone to oxidative damage. We found that Magmas regulates cellular ROS levels by controlling its production as well as scavenging. Magmas promotes cellular tolerance toward oxidative stress by enhancing antioxidant enzyme activity, thus preventing induction of apoptosis and damage to cellular components. Magmas enhances the activity of electron transport chain (ETC) complexes, causing reduced ROS production. Our results suggest that J-like domain of Magmas is essential for maintenance of redox balance. The function of Magmas as a ROS sensor was found to be independent of its role in protein import. The unique ROS modulatory role of Magmas is highlighted by its ability to increase cell tolerance to oxidative stress even in yeast model organism. The cytoprotective capability of Magmas against oxidative damage makes it an important candidate for future investigation in therapeutics of oxidative stress-related diseases.
Resumo:
Estudos epidemiológicos e experimentais têm sugerido que fatores de risco cardiovasculares podem ser parcialmente atribuídos às influências do ambiente em que vive o indivíduo, e que a nutrição materna influencia na programação de alterações metabólicas e cardiovasculares no indivíduo adulto e que caracterizam a síndrome metabólica (SM). Em contrapartida, estudos prévios de nosso laboratório demonstram que o extrato da casca de uva Vitis labrusca (GSE) possui efeito vasodilatador, antihipertensivo e antioxidante. Desta forma, o objetivo deste estudo foi avaliar o efeito do tratamento oral com GSE (200mg/kg/dia), sobre as alterações cardiovasculares e metabólicas e estresse oxidativo observados na prole adulta (fêmea e machos) com 3 e 6 meses, cujas mães foram submetidas a uma dieta rica em gordura (hiperlipídica) durante a lactação. Quatro grupos de ratas foram alimentados com dietas experimentais: controle (7% de gordura); controle + GSE (7% de gordura + GSE), hiperlipídica (24% de gordura); hiperlipídica + GSE (24% de gordura + GSE) durante a lactação. Após o desmame, todos os filhotes passaram a ser alimentados com uma dieta controle e foram sacrificados aos 3 ou 6 meses de idade. A pressão arterial sistólica (PAS) foi medida por pletismografia de cauda e o efeito vasodilatador da acetilcolina (ACh) foi avaliado em leito arterial mesentérico (LAM) perfundido. Foram avaliados o peso corporal, adiposidade (intra-abdominal e gonadal), níveis plasmáticos de colesterol total, triglicerídeos, glicose e insulina, e a resistência à insulina (RI) foi calculada pelo índice de HOMA IR. As expressões do IRS-1, Akt e GLUT-4 foram determinadas em músculo soleus. O dano oxidativo, níveis de nitritos e a atividade das enzimas antioxidantes: superóxido dismutase, catalase e glutationa peroxidase foram dosados no plasma e homogenato de LAM. A PAS e tecido adiposo foram aumentados nas proles adultas de ambos os sexos e idades do grupo hiperlipídico e revertidos pelo tratamento com o GSE. A resposta vasodilatadora à ACh em LAM não foi diferente entre os grupos de ambos os sexos, mas foram reduzidas com o envelhecimento. Nas proles fêmeas e machos do grupo hiperlipídico também foram observados o aumento dos níveis de triglicerídeos, de glicose e RI em ambas as idades e foram reduzidos pelo GSE. No grupo hiperlipídico houve redução nas expressões de IRS-1, Akt e GLUT-4 e o GSE reverteu estas expressões. Os níveis plasmáticos de malondialdeído estavam aumentados e os níveis de nitrito diminuídos no grupo hiperlipídico, de ambos os sexos e idades e foram revertidos pelo GSE. As atividades das enzimas antioxidantes no plasma e no mesentério foram reduzidas no grupo hiperlipídico e restauradas pelo GSE. Em conclusão, O GSE parece proteger as proles fêmeas e machos, cujas mães foram expostas a uma dieta hiperlipídica durante a lactação, dos fatores de riscos cardiovasculares, proporcionando uma fonte alternativa nutricional para a prevenção da SM.