998 resultados para Antifungal Therapy


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Despite highly active anti-retroviral therapy, cryptococcal meningoencephalitis is the second most prevalent neurological disease in Brazilian AIDS patients, being frequently a defining condition with several episodes. As knowledge of Cryptococcus neoformans isolates in the same episode is critical for understanding why some patients develop several episodes, we investigated the genotype characteristics of C. neoformans isolates in two different situations. By pulsed field gel electrophoresis and random amplifield polymorphic DNA analysis, 54 isolates from 12 patients with AIDS and cryptococcosis were analyzed. Group 1 comprised 39 isolates from nine patients with a single episode and hospitalization. Group 2 comprised 15 isolates from three patients with two episodes and hospitalizations. Except for three patients from group 1 probably infected with a single C. neoformans isolate, the other nine patients probably were infected with multiple isolates selected in different collection periods, or the infecting isolate might have underwent mutation to adapt and survive the host immune system and/or the antifungal therapy. However, the three patients from group 2 presented genetic diversity among isolates collected in both hospitalizations, possibly having hosted the initial isolate in both periods. These data, emphasize that Cryptococcus diversity in infection can contribute to strategies of treatment and prevention of cryptococcosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The clinical relevance of recovering Aspergillus species in intensive care unit patients is unknown. Diagnosis of invasive pulmonary aspergillosis is extremely difficult because there are no specific tests sensitive enough to detect it. The rapidly fatal prognosis of this infection without treatment justifies early antifungal therapy. A clinical algorithm may aid clinicians to manage critically ill patients from whose respiratory specimens Aspergillus spp. have been isolated. This new tool needs to be validated in a large cohort of patients before it can be recommended.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Dermatophyte identification in tinea capitis is essential for choosing the appropriate treatment and in tinea infections to identify the possible source. The failure of fungi to grow in cultures frequently occurs, especially in cases of previous antifungal therapy. OBJECTIVES: To develop a rapid polymerase chain reaction (PCR) sequencing assay for dermatophyte identification in tinea capitis and tinea corporis. MATERIAL AND METHODS: Fungal DNA was extracted from hair and skin samples that were confirmed to be positive by direct mycological examination. Dermatophytes were identified by the sequence of a 28S ribosomal DNA subunit amplicon generated by nested PCR. RESULTS: Nested PCR was found to be necessary to obtain amplicons in substantial amounts for dermatophyte identification by sequencing. The results agreed with those of classical mycological identification in 14 of 23, 6 of 10, and 20 of 23 cases of tinea capitis, tinea corporis and tinea pedis, respectively, from which a dermatophyte was obtained in culture. In seven of the 56 cases, another dermatophyte was identified, revealing previous misidentification. A dermatophyte was identified in 12 of 18, three of five, and four of nine cases of tinea capitis, tinea corporis and tinea pedis, respectively, in cases in which no dermatophyte grew in culture. CONCLUSIONS: Although the gold standard dermatophyte identification from clinical samples remains fungal cultures, the assay developed in the present study is especially suitable for tinea capitis. Improved sensitivity for the identification of dermatophyte species was obtained as it is possible to identify the dermatophyte when the fungus fails to grow in cultures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE OF REVIEW: Invasive fungal infections remain a serious complication for critically ill ICU patients. The aim of this article is to review recent efficacy data of newer antifungal agents for the treatment of invasive candidiasis. The influence that recent epidemiological trends, advances in diagnostic testing, and risk prediction methods exert on the optimization of antifungal therapy for critically ill ICU patients will also be reviewed. RECENT FINDINGS: Recent clinical trials have documented the clinical efficacy of the echinocandins and the newer triazoles for the management of invasive candidiasis. Thus far, resistance to echinocandins remains rare. Changes in the epidemiology of Candida spp. causing invasive candidiasis, such as an increasing relative proportion of non-albicans Candida spp., have not been universally reported, although they have important implications for the use of fluconazole as first-line therapy for invasive candidiasis. Efforts to improve the timeliness and accuracy of laboratory diagnostic techniques and clinical prediction models to allow early and accurately targeted antifungal intervention strategies continue. SUMMARY: Echinocandins, given their clinical efficacy, spectrum of activity, and favourable pharmacological properties, are likely to replace fluconazole as initial antifungal agents of choice among critically ill ICU patients. The optimization of patient outcomes will require more accurately targeted early antifungal intervention strategies based upon sensitive and specific biological and clinical markers of risk.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rationale: Life-threatening intraabdominal candidiasis (IAC) occurs in 30 to 40% of high-risk surgical intensive care unit (ICU) patients. Although early IAC diagnosis is crucial, blood cultures are negative, and the role of Candida score/colonization indexes is not established. Objectives: The aim of this prospective Fungal Infection Network of Switzerland (FUNGINOS) cohort study was to assess accuracy of 1,3-β-d-glucan (BG) antigenemia for diagnosis of IAC. Methods: Four hundred thirty-four consecutive adults with abdominal surgery or acute pancreatitis and ICU stay 72 hours or longer were screened: 89 (20.5%) at high risk for IAC were studied (68 recurrent gastrointestinal tract perforation, 21 acute necrotizing pancreatitis). Diagnostic accuracy of serum BG (Fungitell), Candida score, and colonization indexes was compared. Measurements and Main Results: Fifty-eight of 89 (65%) patients were colonized by Candida; 29 of 89 (33%) presented IAC (27 of 29 with negative blood cultures). Nine hundred twenty-one sera were analyzed (9/patient): median BG was 253 pg/ml (46-9,557) in IAC versus 99 pg/ml (8-440) in colonization (P < 0.01). Sensitivity and specificity of two consecutive BG measurements greater than or equal to 80 pg/ml were 65 and 78%, respectively. In recurrent gastrointestinal tract perforation it was 75 and 77% versus 90 and 38% (Candida score ≥ 3), 79 and 34% (colonization index ≥ 0.5), and 54 and 63% (corrected colonization index ≥ 0.4), respectively. BG positivity anticipated IAC diagnosis (5 d) and antifungal therapy (6 d). Severe sepsis/septic shock and death occurred in 10 of 11 (91%) and 4 of 11 (36%) patients with BG 400 pg/ml or more versus 5 of 18 (28%, P = 0.002) and 1 of 18 (6%, P = 0.05) with BG measurement less than 400 pg/ml. β-Glucan decreased in IAC responding to therapy and increased in nonresponse. Conclusions: BG antigenemia is superior to Candida score and colonization indexes and anticipates diagnosis of blood culture-negative IAC. This proof-of-concept observation in strictly selected high-risk surgical ICU patients deserves investigation of BG-driven preemptive therapy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Fusarium onychomycoses are weakly responsive or unresponsive to standard onychomycosis treatments with oral terbinafine and itraconazole. Objective: To examine whether the use of terbinafine and itraconazole, which are highly effective in fighting Trichophyton onychomycoses, could be a cause of the high incidence of Fusarium nail infections. Methods: Polymerase chain reaction methods were used to detect both Fusarium spp. and Trichophyton spp. in nails of patients who had either received treatment previously or not. Results: No significant microbiological differences were found between treated and untreated patients. In 24 of 79 cases (30%), Fusarium spp. was detected in samples of patients having had no previous antifungal therapy and when Trichophyton spp. grew in culture. Conclusion: Oral terbinafine and itraconazole treatments do not appear to favor the establishment of Fusarium spp. in onychomycosis. © 2014 S. Karger AG, Basel.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Antifungal therapy failure can be associated with increased resistance to the employed antifungal agents. Candida glabrata, the second most common cause of invasive candidiasis, is intrinsically less susceptible to the azole class of antifungals and accounts for 15% of all Candida bloodstream infections. Here, we show that C. glabrata MED2 (CgMED2), which codes for a tail subunit of the RNA polymerase II Mediator complex, is required for resistance to azole antifungal drugs in C. glabrata. An inability to transcriptionally activate genes encoding a zinc finger transcriptional factor, CgPdr1, and multidrug efflux pump, CgCdr1, primarily contributes to the elevated susceptibility of the Cgmed2Δ mutant toward azole antifungals. We also report for the first time that the Cgmed2Δ mutant exhibits sensitivity to caspofungin, a constitutively activated protein kinase C-mediated cell wall integrity pathway, and elevated adherence to epithelial cells. The increased adherence of the Cgmed2Δ mutant was attributed to the elevated expression of the EPA1 and EPA7 genes. Further, our data demonstrate that CgMED2 is required for intracellular proliferation in human macrophages and modulates survival in a murine model of disseminated candidiasis. Lastly, we show an essential requirement for CgMed2, along with the Mediator middle subunit CgNut1 and the Mediator cyclin-dependent kinase/cyclin subunit CgSrb8, for the high-level fluconazole resistance conferred by the hyperactive allele of CgPdr1. Together, our findings underscore a pivotal role for CgMed2 in basal tolerance and acquired resistance to azole antifungals.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The authors describe an invasive Aspergillus fumigatus deep-burn wound infection in a severely burned patient that was successfully treated with a combination of topical terbinafine and systemic voriconazole antifungal therapy. To our knowledge, this is the first case report describing the effective control of an invasive deep-burn wound infection using this combination.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As the mortality associated with invasive Candida infections remains high, it is important to make optimal use of available diagnostic tools to initiate antifungal therapy as early as possible and to select the most appropriate antifungal drug. A panel of experts of the European Fungal Infection Study Group (EFISG) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) undertook a data review and compiled guidelines for the clinical utility and accuracy of different diagnostic tests and procedures for detection of Candida infections. Recommendations about the microbiological investigation and detection of candidaemia, invasive candidiasis, chronic disseminated candidiasis, and oropharyngeal, oesophageal, and vaginal candidiasis were included. In addition, remarks about antifungal susceptibility testing and therapeutic drug monitoring were made.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

INTRODUCTION: For decades, clinicians dealing with immunocompromised and critically ill patients have perceived a link between Candida colonization and subsequent infection. However, the pathophysiological progression from colonization to infection was clearly established only through the formal description of the colonization index (CI) in critically ill patients. Unfortunately, the literature reflects intense confusion about the pathophysiology of invasive candidiasis and specific associated risk factors. METHODS: We review the contribution of the CI in the field of Candida infection and its development in the 20 years following its original description in 1994. The development of the CI enabled an improved understanding of the pathogenesis of invasive candidiasis and the use of targeted empirical antifungal therapy in subgroups of patients at increased risk for infection. RESULTS: The recognition of specific characteristics among underlying conditions, such as neutropenia, solid organ transplantation, and surgical and nonsurgical critical illness, has enabled the description of distinct epidemiological patterns in the development of invasive candidiasis. CONCLUSIONS: Despite its limited bedside practicality and before confirmation of potentially more accurate predictors, such as specific biomarkers, the CI remains an important way to characterize the dynamics of colonization, which increases early in patients who develop invasive candidiasis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Invasive candidiasis, including candidemia and deep-seated Candida infections, is a severe opportunistic infection with an overall mortality in ICU patients comparable to that of severe sepsis/septic shock. With an incidence ranging from 5 to 10 cases per 1000 ICU admissions, invasive candidiasis represents 510% of all ICU-acquired infections. Although a high proportion of critically ill patients is colonised with Candida spp., only 540% develop an invasive infection. The occurrence of this complication is difficult to predict and an early diagnosis remains a major challenge. Indeed, blood cultures are positive in a minority of cases and often late in the course of infection. New non-culture based laboratory techniques may contribute to early diagnosis and management of invasive candidiasis. Recent data suggest that prediction rules based on risk factors, clinical and microbiological parameters or monitoring of Candida colonisation may efficiently identify critically ill patients at high risk of invasive candidiasis who may benefit of preventive or pre-emptive antifungal therapy. In many cancer centres, exposure to azoles antifungals has been associated with an epidemiological shift from Candida albicans to non-albicans Candida species with reduced antifungal susceptibility or intrinsic resistance. This trend has not been observed in recent surveys on candidemia in non-immunocompromised ICU patients. Prophylaxis, pre-emptive or empirical antifungal treatment are possible approaches for prevention or early management of invasive candidiasis. However, the selection of high-risk patients remains critical for an efficient management aimed at reducing the number needed to treat and thus avoiding unnecessary treatments associated with the emergence of resistance, drug toxicity and costs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mitochondrial dysfunction is one of the possible mechanisms by which azole resistance can occur in Candida glabrata. Cells with mitochondrial DNA deficiency (so-called "petite mutants") upregulate ATP binding cassette (ABC) transporter genes and thus display increased resistance to azoles. Isolation of such C. glabrata mutants from patients receiving antifungal therapy or prophylaxis has been rarely reported. In this study, we characterized two sequential and related C. glabrata isolates recovered from the same patient undergoing azole therapy. The first isolate (BPY40) was azole susceptible (fluconazole MIC, 4 μg/ml), and the second (BPY41) was azole resistant (fluconazole MIC, >256 μg/ml). BPY41 exhibited mitochondrial dysfunction and upregulation of the ABC transporter genes C. glabrata CDR1 (CgCDR1), CgCDR2, and CgSNQ2. We next assessed whether mitochondrial dysfunction conferred a selective advantage during host infection by testing the virulence of BPY40 and BPY41 in mice. Surprisingly, even with in vitro growth deficiency compared to BPY40, BPY41 was more virulent (as judged by mortality and fungal tissue burden) than BPY40 in both systemic and vaginal murine infection models. The increased virulence of the petite mutant correlated with a drastic gain of fitness in mice compared to that of its parental isolate. To understand this unexpected feature, genome-wide changes in gene expression driven by the petite mutation were analyzed by use of microarrays during in vitro growth. Enrichment of specific biological processes (oxido-reductive metabolism and the stress response) was observed in BPY41, all of which was consistent with mitochondrial dysfunction. Finally, some genes involved in cell wall remodelling were upregulated in BPY41 compared to BPY40, which may partially explain the enhanced virulence of BPY41. In conclusion, this study shows for the first time that mitochondrial dysfunction selected in vivo under azole therapy, even if strongly affecting in vitro growth characteristics, can confer a selective advantage under host conditions, allowing the C. glabrata mutant to be more virulent than wild-type isolates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Calcineurin is a heterodimeric protein phosphatase complex composed of catalytic (CnaA) and regulatory (CnaB) subunits and plays diverse roles in regulating fungal stress responses, morphogenesis, and pathogenesis. Fungal pathogens utilize the calcineurin pathway to survive in the host environment and cause life-threatening infections. The immunosuppressive calcineurin inhibitors (FK506 and cyclosporine A) are active against fungi, making calcineurin a promising antifungal drug target. Here, we review novel findings on calcineurin localization and functions in Aspergillus fumigatus hyphal growth and septum formation through regulation of proteins involved in cell wall biosynthesis. Extensive mutational analysis in the functional domains of A. fumigatus CnaA has led to an understanding of the relevance of these domains for the localization and function of CnaA at the hyphal septum. An evolutionarily conserved novel mode of calcineurin regulation by phosphorylation in filamentous fungi was found to be responsible for virulence in A. fumigatus. This finding of a filamentous fungal-specific mechanism controlling hyphal growth and virulence represents a potential target for antifungal therapy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Azoles are widely used in antifungal therapy in medicine. Resistance to azoles can occur in Candida albicans principally by overexpression of multidrug transporter gene CDR1, CDR2, or MDR1 or by overexpression of ERG11, which encodes the azole target. The expression of these genes is controlled by the transcription factors (TFs) TAC1 (involved in the control of CDR1 and CDR2), MRR1 (involved in the control of MDR1), and UPC2 (involved in the control of ERG11). Several gain-of-function (GOF) mutations are present in hyperactive alleles of these TFs, resulting in the overexpression of target genes. While these mutations are beneficial to C. albicans survival in the presence of the antifungal drugs, their effects could potentially alter the fitness and virulence of C. albicans in the absence of the selective drug pressure. In this work, the effect of GOF mutations on C. albicans virulence was addressed in a systemic model of intravenous infection by mouse survival and kidney fungal burden assays. We engineered a set of strains with identical genetic backgrounds in which hyperactive alleles were reintroduced in one or two copies at their genomic loci. The results obtained showed that neither TAC1 nor MRR1 GOF mutations had a significant effect on C. albicans virulence. In contrast, the presence of two hyperactive UPC2 alleles in C. albicans resulted in a significant decrease in virulence, correlating with diminished kidney colonization compared to that by the wild type. In agreement with the effect on virulence, the decreased fitness of an isolate with UPC2 hyperactive alleles was observed in competition experiments with the wild type in vivo but not in vitro. Interestingly, UPC2 hyperactivity delayed filamentation of C. albicans after phagocytosis by murine macrophages, which may at least partially explain the virulence defects. Combining the UPC2 GOF mutation with another hyperactive TF did not compensate for the negative effect of UPC2 on virulence. In conclusion, among the major TFs involved in azole resistance, only UPC2 had a negative impact on virulence and fitness, which may therefore have consequences for the epidemiology of antifungal resistance.