914 resultados para Antibiotic, Resistance, Intensive Care
Resumo:
Risk factors for Multi-Drug Resistant Acinetobacter (MDRA) acquisition were studied in patients in a burn intensive care unit (ICU) where there was an outbreak of MDRA. Forty cases were matched with eighty controls based on length of stay in the Burn ICU and statistical analysis was performed on data for several different variables. Matched analysis showed that mechanical ventilation, transport ventilation, number of intubations, number of bronchoscopy procedures, total body surface area burn, and prior Methicillin Resistant Staphylococcus aureus colonization were all significant risk factors for MDRA acquisition. ^ MDRA remains a significant threat to the burn population. Treatment for burn patients with MDRA is challenging as resistance to antibiotics continues to increase. This study underlined the need to closely monitor the most critically ill ventilated patients during an outbreak of MDRA as they are the most at risk for MDRA acquisition.^
Resumo:
In 2000/2001 an outbreak of multi-drug resistant Acinetobacter bauntannii (MDR-AB) susceptible only to amikacin and tobramycin occurred in the intensive care unit (leU) of a general public adult hospital in Brisbane, Australia. Over a 2 year period, a total of 32 new isolates were identified; in all cases, the isolates were considered to be colonising rather than infecting agents. No environmental or other source could be identified. A combination of infection control measures and antibiotic restriction contributed to the eradication of this organism from the leu.
Resumo:
The manner in which elements of clinical history, physical examination and investigations influence subjectively assessed illness severity and outcome prediction is poorly understood. This study investigates the relationship between clinician and objectively assessed illness severity and the factors influencing clinician's diagnostic confidence and illness severity rating for ventilated patients with suspected pneumonia in the intensive care unit (ICU). A prospective study of fourteen ICUs included all ventilated admissions with a clinical diagnosis of pneumonia. Data collection included pneumonia type - community-acquired (CAP), hospital-acquired (HAP) and ventilator-associated (VAP), clinician determined illness severity (CDIS), diagnostic methods, clinical diagnostic confidence (CDC), microbiological isolates and antibiotic use. For 476 episodes of pneumonia (48% CAP, 24% HAP, 28% VAP), CDC was greatest for CAP (64% CAP, 50% HAP and 49% VAP, P < 0.01) or when pneumonia was considered life-threatening (84% high CDC, 13% medium CDC and 3% low CDC, P < 0.001). Life-threatening pneumonia was predicted by worsening gas exchange (OR 4.8, CI 95% 2.3-10.2, P < 0.001), clinical signs of consolidation (OR 2.0, CI 95% 1.2-3.2, P < 0.01) and the Sepsis-Related Organ Failure Assessment (SOFA) Score (OR 1.1, CI 95% 1.1-1.2, P < 0.001). Diagnostic confidence increased with CDIS (OR 163, CI 95% 8.4-31.4, P < 0.001), definite pathogen isolation (OR 3.3, CI 95% 2.0-5.6) and clinical signs of consolidation (OR 2.1, CI 95% 1.3-3.3, P = 0.001). Although the CDIS, SOFA Score and the Simplified Acute Physiologic Score (SAPS II) were all associated with mortality, the SAPS II Score was the best predictor of mortality (P = 0.02). Diagnostic confidence for pneumonia is moderate but increases with more classical presentations. A small set of clinical parameters influence subjective assessment. Objective assessment using SAPS II Scoring is a better predictor of mortality.
Resumo:
This study of ventilated patients investigated pneumonia risk factors and outcome predictors in 476 episodes of pneumonia (48% community-acquired pneumonia, 24% hospital-acquired pneumonia, 28% ventilator-associated pneumonia) using a prospective survey in 14 intensive care units within Australia and New Zealand. For community acquired pneumonia, mortality increased with immunosuppression (OR 5.32, CI 95% 1.58-17.99, P < 0. 01), clinical signs of consolidation (OR 2.43, CI 95% 1.09-5.44, P = 0. 03) and Sepsis-Related Organ Failure Assessment (SOFA) scores (OR 1.19, CI 95% 1.08-1.30, P < 0. 001) but improved if appropriate antibiotic changes were made within three days of intensive care unit admission (OR 0.42, CI 95% 0.20-0.86, P = 0.02). For hospital-acquired pneumonia, immunosuppression (OR 6.98, CI 95% 1.16-42.2, P = 0.03) and non-metastatic cancer (OR 3.78, CI 95% 1.20-11.93, P = 0.02) were the principal mortality predictors. Alcoholism (OR 7.80, CI 95% 1.20-1750, P < 0.001), high SOFA scores (OR 1.44, CI 95% 1.20-1.75, P = 0.001) and the isolation of high risk organisms including Pseudomonas aeruginosa, Acinetobacter spp, Stenotrophomonas spp and methicillin resistant Staphylococcus aureus (OR 4.79, CI 95% 1.43-16.03, P = 0.01), were associated with increased mortality in ventilator-associated pneumonia. The use of non-invasive ventilation was independently protective against mortality for patients with community-acquired and hospital-acquired pneumonia (OR 0.35, CI 95% 0.18-0.68, P = 0.002). Mortality was similar for patients requiting both invasive and non-invasive ventilation and non-invasive ventilation alone (21% compared with 20% respectively, P = 0.56). Pneumonia risks and mortality predictors in Australian and New Zealand ICUs vary with pneumonia type. A history of alcoholism is a major risk factor for mortality in ventilator-associated pneumonia, greater in magnitude than the mortality effect of immunosuppression in hospital-acquired pneumonia or community-acquired pneumonia. Non-invasive ventilation is associated with reduced ICU mortality. Clinical signs of consolidation worsen, while rationalising antibiotic therapy within three days of ICU admission improves mortality for community-acquired pneumonia patients.
Resumo:
This study of ventilated patients investigated current clinical practice in 476 episodes of pneumonia (48% community-acquired pneumonia, 24% hospital-acquired pneumonia, 28% ventilator-associated pneumonia) using a prospective survey in 14 intensive care units (ICUs) within Australia and New Zealand. Diagnostic methods and confidence, disease severity, microbiology and antibiotic use were assessed. All pneumonia types had similar mortality (community-acquired pneumonia 33%, hospital-acquired pneumonia 37% and ventilator-associated pneumonia 24%, P = 0.15) with no inter-hospital differences (P = 0.08-0.91). Bronchoscopy was performed in 26%, its use predicted by admission hospital (one tertiary: OR 9.98, CI 95% 5.11-19.49, P < 0.001; one regional: OR 629, CI 95% 3.24-12.20, P < 0.001), clinical signs of consolidation (OR 3.72, CI 95% 2.09-662, P < 0.001) and diagnostic confidence (OR 2.19, CI 95% 1.29-3.72, P = 0.004). Bronchoscopy did not predict outcome (P = 0.11) or appropriate antibiotic selection (P = 0.69). Inappropriate antibiotic prescription was similar for all pneumonia types (11-13%, P = 0.12) and hospitals (0-16%, P = 0.25). Blood cultures were taken in 51% of cases. For community-acquired pneumonia, 70% received a third generation cephalosporin and 65% a macrolide. Third generation cephalosporins were less frequently used for mild infections (OR 0.38, CI 95% 0.16-0.90, P = 0.03), hospital-acquired pneumonia (OR 0.40, CI 95% 0.23-0.72, P < 0.01), ventilator-associated pneumonia (OR 0.04, CI 95% 0.02-0.13, P < 0.001), suspected aspiration (OR 0.20, CI 95% 0.04-0.92, P = 0.04), in one regional (OR 0.26, CI 95% 0.07-0.97, P = 0.05) and one tertiary hospital (OR 0.14, CI 95% 0.03-0.73, P = 0.02) but were more commonly used in older patients (OR 1.02, CI 95% 1.01-1.03, P = 0.01). There is practice variability in bronchoscopy and antibiotic use for pneumonia in Australian and New Zealand ICUs without significant impact on patient outcome, as the prevalence of inappropriate antibiotic prescription is low. There are opportunities for improving microbiological diagnostic work-up for isolation of aetiological pathogens.
Resumo:
In 2012, were estimated 6.7 million cases of healthcare-associated infections (HAI) either in long-term care facilities or acute-care hospitals from which result 37,000 deaths configuring a serious public health problem. The etiological agents are diverse and often resistant to antimicrobial drugs. One of the mechanisms responsible for the emergence of drug resistance is biofilm assembly. Biofilms are defined as thin layers of microorganisms adhering to the surface of a structure, which may be organic or inorganic, together with the polymers that they secrete. They are dynamic structures which experience different stages of organization with the ageing and are linked to an increase in bacterial resistance to host defense mechanisms, antibiotics, sterilization procedures other than autoclaving, persistence in water distribution systems and other surfaces. The understanding of bacteria organization within the biofilm and the identification of differences between planktonic and sessile forms of bacteria will be a step forward to fight HAIs.
Resumo:
We report a case of a 67 year-old-male patient admitted to the intensive care unit in the post-coronary bypass surgery period who presented cardiogenic shock, acute renal failure and three episodes of sepsis, the latter with pulmonary distress at the 30th post-operative day. The patient expired within five days in spite of treatment with vancomycin, imipenem, colistimethate and amphotericin B. At autopsy severe adenovirus pneumonia was found. Viral pulmonary infections following cardiovascular surgery are uncommon. We highlight the importance of etiological diagnosis to a correct treatment approach.
Resumo:
In order to assess the prevalence of and risk factors for aminoglycoside-associated nephrotoxicity in intensive care units (ICUs), we evaluated 360 consecutive patients starting aminoglycoside therapy in an ICU. The patients had a baseline calculated glomerular filtration rate (cGFR) of ?30 ml/min/1.73 m2. Among these patients, 209 (58 per cent) developed aminoglycoside-associated nephrotoxicity (the acute kidney injury [AKI] group, which consisted of individuals with a decrease in cGFR of >20 per cent from the baseline cGFR), while 151 did not (non-AKI group). Both groups had similar baseline cGFRs. The AKI group developed a lower cGFR nadir (45 ± 27 versus 79 ± 39 ml/min/1.73 m2 for the non-AKI group; P < 0.001); was older (56 ± 18 years versus 52 ± 19 years for the non-AKI group; P = 0.033); had a higher prevalence of diabetes (19.6 per cent versus 9.3 per cent for the non-AKI group; P = 0.007); was more frequently treated with other nephrotoxic drugs (51 per cent versus 38 per cent for the non-AKI group; P = 0.024); used iodinated contrast more frequently (18 per cent versus 8 per cent for the non-AKI group; P = 0.0054); and showed a higher prevalence of hypotension (63 per cent versus 44 per cent for the non-AKI group; P = 0.0003), shock (56 per cent versus 31 per cent for the non-AKI group; P < 0.0001), and jaundice (19 per cent versus 8 per cent for the non-AKI group; P = 0.0036). The mortality rate was 44.5 per cent for the AKI group and 29.1 per cent for the non-AKI group (P = 0.0031). A logistic regression model identified as significant (P < 0.05) the following independent factors that affected aminoglycoside-associated nephrotoxicity: a baseline cGFR of <60 ml/min/1.73 m2 (odds ratio [OR], 0.42), diabetes (OR, 2.13), treatment with other nephrotoxins (OR, 1.61) or iodinated contrast (OR, 2.13), and hypotension (OR, 1.83). (To continue) In conclusion, AKI was frequent among ICU patients receiving an aminoglycoside, and it was associated with a high rate of mortality. The presence of diabetes or hypotension and the use of other nephrotoxic drugs and iodinated contrast were independent risk factors for the development of aminoglycoside-associated nephrotoxicity
Resumo:
The aim of this study was to develop the concept of the dignified death of children in Brazilian pediatric intensive care units (PICUs). The Hybrid Model for Concept Development was used to develop a conceptual structure of dignified death in PICUs in an attempt to define the concept. The fieldwork study was carried out by means of in-depth interviews with nine nurses and seven physicians working in PICUs. Not unexpectedly, the concept of dignified death was found to be a complex phenomenon involving aspects related to decisions made by the multidisciplinary team as well as those related to care of the child and the family. Knowledge of the concept`s dimensions can promote reflection on the part of healthcare professionals regarding the values and beliefs underlying their conduct in end-of-life situations. Our hope is that this study may contribute to theoretic and methodological development in the area of end-of-life care.
Resumo:
Purpose Adverse drug events (ADEs) are harmful and occur with alarming frequency in critically ill patients. Complex pharmacotherapy with multiple medications increases the probability of a drug interaction (DI) and ADEs in patients in intensive care units (ICUs). The objective of the study is to determine the frequency of ADEs among patients in the ICU of a university hospital and the drugs implicated. Also, factors associated with ADEs are investigated. Methods This cross-sectional study investigated 299 medical records of patients hospitalized for 5 or more days in an ICU. ADEs were identified through intensive monitoring adopted in hospital pharmacovigilance and also ADE triggers. Adverse drug reactions (ADR) causality was classified using the Naranjo algorithm. Data were analyzed through descriptive analysis, and through univariate and multiple logistic regression. Results The most frequent ADEs were ADRs type A, of possible causality and moderate severity. The most frequent ADR was drug-induced acute kidney injury. Patients with ADEs related to DIs corresponded to 7% of the sample. The multiple logistic regression showed that length of hospitalization (OR = 1.06) and administration of cardiovascular drugs (OR = 2.2) were associated with the occurrence of ADEs. Conclusion Adverse drug reactions of clinical significance were the most frequent ADEs in the ICU studied, which reduces patient safety. The number of ADEs related to drug interactions was small, suggesting that clinical manifestations of drug interactions that harm patients are not frequent in ICUs.
Resumo:
Objective To evaluate drug interaction software programs and determine their accuracy in identifying drug-drug interactions that may occur in intensive care units. Setting The study was developed in Brazil. Method Drug interaction software programs were identified through a bibliographic search in PUBMED and in LILACS (database related to the health sciences published in Latin American and Caribbean countries). The programs` sensitivity, specificity, and positive and negative predictive values were determined to assess their accuracy in detecting drug-drug interactions. The accuracy of the software programs identified was determined using 100 clinically important interactions and 100 clinically unimportant ones. Stockley`s Drug Interactions 8th edition was employed as the gold standard in the identification of drug-drug interaction. Main outcome Sensitivity, specificity, positive and negative predictive values. Results The programs studied were: Drug Interaction Checker (DIC), Drug-Reax (DR), and Lexi-Interact (LI). DR displayed the highest sensitivity (0.88) and DIC showed the lowest (0.69). A close similarity was observed among the programs regarding specificity (0.88-0.92) and positive predictive values (0.88-0.89). The DIC had the lowest negative predictive value (0.75) and DR the highest (0.91). Conclusion The DR and LI programs displayed appropriate sensitivity and specificity for identifying drug-drug interactions of interest in intensive care units. Drug interaction software programs help pharmacists and health care teams in the prevention and recognition of drug-drug interactions and optimize safety and quality of care delivered in intensive care units.
Resumo:
BACKGROUND: Guidelines for red blood cell (RBC) transfusions exist; however, transfusion practices vary among centers. This study aimed to analyze transfusion practices and the impact of patients and institutional characteristics on the indications of RBC transfusions in preterm infants. STUDY DESIGN AND METHODS: RBC transfusion practices were investigated in a multicenter prospective cohort of preterm infants with a birth weight of less than 1500 g born at eight public university neonatal intensive care units of the Brazilian Network on Neonatal Research. Variables associated with any RBC transfusions were analyzed by logistic regression analysis. RESULTS: Of 952 very-low-birth-weight infants, 532 (55.9%) received at least one RBC transfusion. The percentages of transfused neonates were 48.9, 54.5, 56.0, 61.2, 56.3, 47.8, 75.4, and 44.7%, respectively, for Centers 1 through 8. The number of transfusions during the first 28 days of life was higher in Center 4 and 7 than in other centers. After 28 days, the number of transfusions decreased, except for Center 7. Multivariate logistic regression analysis showed higher likelihood of transfusion in infants with late onset sepsis (odds ratio [OR], 2.8; 95% confidence interval [CI], 1.8-4.4), intraventricular hemorrhage (OR, 9.4; 95% CI, 3.3-26.8), intubation at birth (OR, 1.7; 95% CI, 1.0-2.8), need for umbilical catheter (OR, 2.4; 95% CI, 1.3-4.4), days on mechanical ventilation (OR, 1.1; 95% CI, 1.0-1.2), oxygen therapy (OR, 1.1; 95% CI, 1.0-1.1), parenteral nutrition (OR, 1.1; 95% CI, 1.0-1.1), and birth center (p < 0.001). CONCLUSIONS: The need of RBC transfusions in very-low-birth-weight preterm infants was associated with clinical conditions and birth center. The distribution of the number of transfusions during hospital stay may be used as a measure of neonatal care quality.
Resumo:
Objective: to determine the relationship between age and in-hospital mortality of elderly patients, admitted to ICU, requiring and not requiring invasive ventilatory support. Design: prospective observational cohort study conducted over a period of 11 months. Setting: medical-surgical ICU at a Brazilian university hospital. Subjects: a total of 840 patients aged 55 years and older were admitted to ICU. Methods: in-hospital death rates for patients requiring and not requiring invasive ventilatory support were compared across three successive age intervals (55-64; 65-74 and 75 or more years), adjusting for severity of illness using the Acute Physiologic Score. Results: age was strongly correlated with mortality among the invasively ventilated subgroup of patients and the multivariate adjusted odds ratios increased progressively with every age increment (OR = 1.60, 95% CI = 1.01-2.54 for 65-74 years old and OR = 2.68, 95% CI = 1.58-4.56 for >= 75 years). For the patients not submitted to invasive ventilatory support, age was not independently associated with in-hospital mortality (OR = 2.28, 95% CI = 0.99-5.25 for 65-74 years old and OR = 1.95, 95% CI = 0.82-4.62 for >= 75 years old). Conclusions: the combination of age and invasive mechanical ventilation is strongly associated with in-hospital mortality. Age should not be considered as a factor related to in-hospital mortality of elderly patients not requiring invasive ventilatory support in ICU.