970 resultados para Antenna multibanda
Resumo:
Microstrip antenna, Wideband antennas, high gain antennas, Microstrip filters, DGS filters , low-pass filter, band-pass filter
Resumo:
Theoretische Elektrotechnik, Elektromagnetische Verträglichkeit, Antennentheorie, Elektrodynamik, Mathematische Methoden der Physik, Leitungstheorie, Mikrowellentechnik, Hohlraumresonatoren
Resumo:
El primer objectiu del projecte és l’estudi i disseny d’un desfassador bi – banda reconfigurable per integrar en sistemes d’antenes intel·ligents i amb aplicació a sistemes dual band WLAN operant en els marges freqüencials 2.4 - 2.5 GHz i 5.15 – 5.35GHz. El desfassador que es proposa realitzar està basat en un acoblador híbrid multibanda, diplexors i circuits reconfigurables commutats amb díodes PIN. El segon objectiu del projecte és l’aprenentatge de la metodologia de disseny de circuits d’RF i més concretament les següents etapes: estudi i disseny teòric (analític), simulació circuital (ADS), simulació electromagnètica (Momentum), cosimulació circuital-electromagnètica i fabricació, així com les diferents interacions i mecanismes d’optimització entre aquestes etapes.
Resumo:
This paper applies random matrix theory to obtain analytical characterizations of the capacity of correlated multiantenna channels. The analysis is not restricted to the popular separable correlation model, but rather it embraces a more general representation that subsumesmost of the channel models that have been treated in the literature. For arbitrary signal-to-noise ratios (SNR), the characterization is conducted in the regime of large numbers of antennas. For the low- and high-SNR regions, in turn, we uncover compact capacity expansions that are valid for arbitrary numbers of antennas and that shed insight on how antenna correlation impacts the tradeoffs between power, bandwidth and rate.
Resumo:
We characterize the capacity-achieving input covariance for multi-antenna channels known instantaneously at the receiver and in distribution at the transmitter. Our characterization, valid for arbitrary numbers of antennas, encompasses both the eigenvectors and the eigenvalues. The eigenvectors are found for zero-mean channels with arbitrary fading profiles and a wide range of correlation and keyhole structures. For the eigenvalues, in turn, we present necessary and sufficient conditions as well as an iterative algorithm that exhibits remarkable properties: universal applicability, robustness and rapid convergence. In addition, we identify channel structures for which an isotropic input achieves capacity.
Per-antenna rate and power control for MIMO layered architectures in the low- and high-power regimes
Resumo:
In a MIMO layered architecture, several codewordsare transmitted from a multiplicity of antennas. Although thespectral efficiency is maximized if the rates of these codewordsare separately controlled, the feedback rate within the linkadaptation loop is reduced if they are constrained to be identical.This poses a direct tradeoff between performance andfeedback overhead. This paper provides analytical expressionsthat quantify the difference in spectral efficiency between bothapproaches for arbitrary numbers of antennas. Specifically, thecharacterization takes place in the realm of the low- and highpowerregimes via expansions that are shown to have a widerange of validity.In addition, the possibility of adjusting the transmit powerof each codeword individually is considered as an alternative tothe separate control of their rates. Power allocation, however,turns out to be inferior to rate control within the context of thisproblem.
Resumo:
A simplc formulation Io compute thc envelope correlation of anantenna divemiry system is dcrired. 11 is shown how to compute theenvelope correlation hom the S-parameter descnplian of the antennasystem. This approach has the advantage that i t does not require thecomputation nor the measurement of the radiation panem of theantenna system. It also offers the advantage of providing a clcaunderstanding ofthe effects ofmutual coupling and input match on thediversity performance of the antcnnii system.
Resumo:
A general formalism is set up to analyze the response of an arbitrary solid elastic body to an arbitrary metric gravitational wave (GW) perturbation, which fully displays the details of the interaction antenna wave. The formalism is applied to the spherical detector, whose sensitivity parameters are thereby scrutinized. A multimode transfer function is defined to study the amplitude sensitivity, and absorption cross sections are calculated for a general metric theory of GW physics. Their scaling properties are shown to be independent of the underlying theory, with interesting consequences for future detector design. The GW incidence direction deconvolution problem is also discussed, always within the context of a general metric theory of the gravitational field.
Resumo:
We study the response and cross sections for the absorption of GW energy generated in a Jordan-Brans-Dicke theory by a resonant mass detector shaped as a hollow sphere. As a source of the GW we take a binary system in the Newtonian approximation. For masses of the stars of the order of the solar mass, the emitted GW sweeps a range of frequencies which include the first resonant mode of the detector.
Resumo:
In this paper aspects of design for manufacturability and assembly (DFMA) are applied to the design of coaxially fed standard gain horn antenna for 1.70 - 2.60 GHz. Possibilities to utilize cross-technological approach method is examined. Methods of DFMA for laser processing are covered and practical design guides and methods are developed. Antenna construction for easy manufacturing and specialized performance is shown. Required dimensions and tolerances are discussed and suitable materials for laser processing are selected.
Resumo:
The excitation energy transfer between chlorophylls in major and minor antenna complexes of photosystem II (PSII) was investigated using quantum Fourier transforms. These transforms have an important role in the efficiency of quantum algorithms of quantum computers. The equation 2n=N was used to make the connection between excitation energy transfers using quantum Fourier transform, where n is the number of qubits required for simulation of transfers and N is the number of chlorophylls in the antenna complexes.
Resumo:
Contactless integrated circuit cards are one form of application of radio frequency identification. They are used in applications such as access control, identification, and payment in public transport. The contactless IC cards are passive which means that both the data and the energy are transferred to the card without contact using inductive coupling. Antenna design and optimization of the design for contactless IC cards defined by ISO/IEC14443 is studied. The basic operation principles of contactless system are presented and the structure of contactless IC card is illustrated. The structure was divided between the contactless chip and the antenna. The operation of the antenna was covered in depth and the parameters affecting to the performance of the antenna were presented. Also the different antenna technologies and connection technologies were provided. The antenna design process with the parameters and the design tools isillustrated and optimization of the design is studied. To make the design process more ideal a target of development was discovered, which was the implementation of test application. The optimization of the antenna design was presented based on the optimization criteria defined in this study. The solution for the implementation of these criteria and the effect of each criterion was found. For enhancing the performance of the antenna a focus for future study was proposed.
Resumo:
This thesis is about development broadband feed for two-mirror antenna system that match following requirements: beamwidth from 45 to 90 degrees at -3 dB level, circular polarization, absence of radiation to the lower hemisphere area. Literature review was done in the areas of the UWB antennas creation. During the work attempts were made to create a feed in a form of the quad ridged horn and "eleven" antennas. The latter is introduced as the most effective feed among all antennas discussed in thesis. Radiation patterns and other results for "eleven" antenna were obtained. Results were saved as far field sources and placed slightly below focal point into the two-mirror antenna system, because phase center of the “eleven” antenna is predominantly shifted upwards. Directivity patterns for the two-mirror system were obtained and the conclusions about the work results have been made