986 resultados para Anopheline vectors
Resumo:
Jembrana disease virus (JDV) is a newly isolated and characterised bovine lentivirus. It causes an acute disease in Ball cattle (Bos javanicus). which can be readily transmitted to susceptible cattle with 17% mortality. There is as yet no treatment or preventive vaccine. We have developed a gene transfer vector system based on JDV that has three components. The first of the components is a bicistronic transfer vector plasmid that was constructed to contain cis-sequences from the JDV genome, including 5 '- and 3 ' -long terminal repeats (LTRs), 0.4 kb of truncated gag and 1.1 kb of 3 ' -env, a multiple cloning site to accommodate the gene(s) of interest for transfer, and an internal ribosome entry site plus the neomycin phosphotransferase (Neo) gene cassette for antibiotic selection. The second element is a packaging plasmid that contains trans-sequences. including gag, pol. vif, tar and rev: but without the env and packaging signals. The third is a plasmid encoding the G glycoprotein of vesicular stomatitis virus (VSV-G) to supply the vector an envelope for pseudotyping. Cotransfection of 293T cells with these three plasmid components produced VSV-G pseudotyped. disabled, replication defective, bicistronic JDV vectors encoding the green fluorescent protein (EGFP) and the Neo resistance selection maker simultaneously with a titre range of (0.4-1.2) x 10(6) CFU/ml. Transduction of several replicating primary and transformed cells from cattle, primate and human sources and importantly growth-arrested cells with the JDV vectors showed high efficiency of EGFP gene transfer at 35-75%, which was stable and the expression of EGFP was long term. Furthermore, these JDV vectors were designed to suit the inclusion and expression of genes corresponding to JDV specific proteins, such as gag or env, for the development of vaccines for Jembrana disease. This strategy should also be applicable to other bovine diseases as wall. The design and construction of the JDV vector system should facilitate the study of the lentivirology and pathogenesis of the diseases associated with JDV or other bovine virus infections. To our knowledge, this is the first such vector system developed from a cattle virus. (C) 2001 Elsevier Science B.V. All rights reserved.
A high efficient and consistent method for harvesting large volumes of high-titre lentiviral vectors
Resumo:
Lentiviral vectors pseudotyped with vesicular stomatitis virus glycoprotein (VSV-G) are emerging as the vectors of choice for in vitro and in vivo gene therapy studies. However, the current method for harvesting lentivectors relies upon ultracentrifugation at 50 000 g for 2 h. At this ultra-high speed, rotors currently in use generally have small volume capacity. Therefore, preparations of large volumes of high-titre vectors are time-consuming and laborious to perform. In the present study, viral vector supernatant harvests from vector-producing cells (VPCs) were pre-treated with various amounts of poly-L-lysine (PLL) and concentrated by low speed centrifugation. Optimal conditions were established when 0.005% of PLL (w/v) was added to vector supernatant harvests, followed by incubation for 30 min and centrifugation at 10 000 g for 2 h at 4 degreesC. Direct comparison with ultracentrifugation demonstrated that the new method consistently produced larger volumes (6 ml) of high-titre viral vector at 1 x 10(8) transduction unit (TU)/ml (from about 3000 ml of supernatant) in one round of concentration. Electron microscopic analysis showed that PLL/viral vector formed complexes, which probably facilitated easy precipitation at low-speed concentration (10 000 g), a speed which does not usually precipitate viral particles efficiently. Transfection of several cell lines in vitro and transduction in vivo in the liver with the lentivector/PLL complexes demonstrated efficient gene transfer without any significant signs of toxicity. These results suggest that the new method provides a convenient means for harvesting large volumes of high-titre lentivectors, facilitate gene therapy experiments in large animal or human gene therapy trials, in which large amounts of lentiviral vectors are a prerequisite.
Resumo:
Laboratory bioassay studies were conducted in southeast Queensland, Australia,: on the efficacy of Teknar (R), VectoBac (R) 12AS, and Cybate (R) (active ingredient: 1,200 international toxic units Bacillus thuringiensis var, israelensis [Bti]) against 3rd instars of the arbovirus vectors Aedes aegypti. Ae. notoscriptus, Ae. vigilax, and Ae. camptorhynchus. Probit analyses were then used to determine LD,, (median lethal dose), LD95, and lethal dose ratios (LDR). Aedes aegypti and Ae. notoscriptus, both container-habitat species, tolerated the highest Bti concentrations compared with saltmarsh Ae. vigilax and Ae. camptorhynchus. For example, the LDR for Ae. vigilax versus Ae. notoscriptus exposed to Cybate was 0.14 (95% confidence limit [CL] 0.03-0.61). Similarly, the Cybate LDR for Ae. camptorhynchus versus Ae. notoscriptus was 0.22 (95% CL 0.07-0.70). Teknar produced similar results with an LDR of 0.21 (95% CL 0.04-1.10) for Aedes vigilax versus Aedes notoscriptus. Differences in product efficacy were found when tested against the 2 container-breeding species. Cybate was less effective than Teknar with LDRs of 1.55 (95% CL 0.65-3.67) and 1.87 (95% CL 0.68-5.15) for Aedes aegypti and Ae. notoscriptus, respectively. The significant differences in susceptibility between mosquito species and varying efficacy between products highlight the importance of evaluating concentration-response data prior to contracting with distributors of mosquito control products. This information is crucial to resistance management strategies.
Resumo:
Anophelines were sampled from 82 locations oil Buka and Bougainville islands in Papua New Guinea by larval collections, carbon dioxide-baited Mosquito traps, and human biting catches. Anopheles farauti s.s. was collected in larval Surveys but infrequently in mosquito traps on both islands; on Buka Island this species was readily collected in human biting catches. Anopheles faraunti 2 was commonly collected in larval surveys on both islands however. it was not collected in either mosquito traps or human biting catches. Anopheles punctulatus was found only on Buka Island, where it was commonly collected as larvae, but rarely in human biting catches and mosquito traps. Anopheles lungae was collected Lis larvae from only I site on Bougainville. Anopheles farauti s.s. led consistently throughout the night (1900-0600 h): small peaks at midnight and dawn were not statistically significant. Of 1,156 An. farauti s.s. specimens examined by enzyme-linked immunosorbent assay for malaria sporozoites. 20 were found to be positive: 12 were positive for Plasmodium falciparum and 8 were positive for P. vivax (247 variant = 5: 210 variant = 3). Anopheles farauti s.s. seems to be the major malaria vector on these islands, whereas An. punctulatus may play a minor role on Buka Island. Anophele farauti 2 is unlikely to be involved in malaria transmission on Buka or Bougainville islands.
Resumo:
We used a network of 20 carbon dioxide- and octenol-supplemented light traps to sample adult mosquitoes throughout Russell Island in southern Moreton Bay, south-east Queensland. Between February and April 2001, an estimated 1365 564 adult female mosquitoes were collected. In contrast to an average catch of 9754 female mosquitoes per trap night on Russell Island, reference traps set on Macleay Island and on the mainland returned average catches of 3172 and 222, respectively. On Russell Island, Ochlerotatus vigilax (Skuse), Coquillettidia linealis (Skuse), Culex annulirostris Skuse and Verrallina funerea (Theobald), known or suspected vectors of Ross River (RR) and/or Barmah Forest (BF) viruses, comprised 89.6% of the 25 taxa collected. When the spatial distributions of the above species were mapped and analysed using local spatial statistics, all were found to be present in highest numbers towards the southern end of the island during most of the 7 weeks. This indicated the presence of more suitable adult harbourage sites and/or suboptimal larval control efficacy. As immature stages and the breeding habitat of Cq. linealis are as yet undescribed, this species in particular presents a considerable impediment to proposed development scenarios. The method presented here of mapping the numbers of mosquitoes throughout a local government area allows specific areas that have high vector numbers to be defined.
Resumo:
We describe remarkable success in controlling dengue vectors, Aedes aegypti (L.) and Aedes albopictus (Skuse), in 6 communes with 11,675 households and 49,647 people in the northern provinces of Haiphong, Hung Yen, and Nam Dinh in Vietnam. The communes were selected for high-frequency use of large outdoor concrete tanks and wells. These were found to be the source of 49.6-98.4% of Ae. aegypti larvae, which were amenable to treatment with local Mesocyclops, mainly M. woutersi Van der Velde, M. aspericornis (Daday) and M. thermocyclopoides Harada. Knowledge, attitude, and practice surveys were performed to determine whether the communities viewed dengue and dengue hemorrhagic fever as a serious health threat; to determine their knowledge of the etiology, attitudes, and practices regarding control methods including Mesocyclops; and to determine their receptivity to various information methods. On the basis of the knowledge, attitude, and practice data, the community-based dengue control program comprised a system of local leaders, health volunteer teachers, and schoolchildren, supported by health professionals. Recycling of discards for economic gain was enhanced, where appropriate, and this, plus 37 clean-up campaigns, removed small containers unsuitable for Mesocyclops treatment. A previously successful eradication at Phan Boi village (Hung Yen province) was extended to 7 other villages forming Di Su commune (1,750 households) in the current study. Complete control was also achieved in Nghia Hiep (Hung Yen province) and in Xuan Phong (Nam Dinh province); control efficacy was greater than or equal to 99.7% in the other 3 communes (Lac Vien in Haiphong, Nghia Dong, and Xuan Kien in Nam Dinh). Although tanks and wells were the key container types of Ae. aegypti productivity, discarded materials were the source of 51% of the standing crop of Ae. albopictus. Aedes albopictus larvae were eliminated from the 3 Nam Dinh communes, and 86-98% control was achieved in the other 3 communes. Variable dengue attack rates made the clinical and serological comparison of control and untreated communes problematic, but these data indicate that clinical surveillance by itself is inadequate to monitor dengue transmission.
Resumo:
We have previously demonstrated the ability of the vaccine vectors based on replicon RNA of the Australian flavivirus Kunjin (KUN) to induce protective antiviral and anticancer CD8(+) T-cell responses using murine polyepitope as a model immunogen (I. Anraku, T. J. Harvey, R. Linedale, J. Gardner, D. Harrich, A. Suhrbier, and A. A. Khromykh, J. Virol. 76:3791-3799, 2002). Here we showed that immunization of BALB/c mice with KUN replicons encoding HIV-1 Gag antigen resulted in induction of both Gag-specific antibody and protective Gag-specific CD8(+) T-cell responses. Two immunizations with KUNgag replicons in the form of virus-like particles (VLPs) induced anti-Gag antibodies with titers of greater than or equal to1:10,000. Immunization with KUNgag replicons delivered as plasmid DNA, naked RNA, or VLPs induced potent Gag-specific CD8(+) T-cell responses, with one immunization of KUNgag VLPs inducing 4.5-fold-more CD8(+) T cells than the number induced after immunization with recombinant vaccinia virus carrying the gag gene (rVVgag). Two immunizations with KUNgag VLPs also provided significant protection against challenge with rVVgag. Importantly, KUN replicon VLP vaccinations induced long-lasting immune responses with CD8(+) T cells able to secrete gamma interferon and to mediate protection 6 to 10 months after immunization. These results illustrate the potential value of the KUN replicon vectors for human immunodeficiency virus vaccine design.
Resumo:
Since the pioneering work of Charles Nicolle in 1909 [see Gross (1996) Proc Natl Acad Sci USA 93:10539-10540] most medical officers and scientists have assumed that body lice are the sole vectors of Rickettsia prowazekii, the aetiological agent of louse-borne epidemic typhus (LBET). Here we review the evidence for the axiom that head lice are not involved in epidemics of LBET. Laboratory experiments demonstrate the ability of head lice to transmit R. prowazekii, but evidence for this in the field has not been reported. However, the assumption that head lice do not transmit R. prowazekii has meant that head lice have not been examined for R. prowazekii during epidemics of LBET. The strong association between obvious (high) infestations of body lice and LBET has contributed to this perception, but this association does not preclude head lice as vectors of R. prowazekii. Indeed, where the prevalence and intensity of body louse infections may be high (e.g. during epidemics of LBET), the prevalence and intensity of head louse infestations is generally high as well. This review of the epidemiology of head louse and body louse infestations, and of LBET, indicates that head lice are potential vectors of R. prowazekii in the field. Simple observations in the field would reveal whether or not head lice are natural vectors of this major human pathogen.
Resumo:
A laboratory study was conducted to test the toxicity of synthetic insecticides added to defibrinated sheep blood kept at room temperature and offered as food to the following triatomine species: Triatoma infestans, Panstrongylus megistus, Triatoma vitticeps, Triatoma pseudomaculata, Triatoma brasiliensis and Rhodnius prolixus. The insecticides used, at a concentration of 1g/l, were: HCH, DDT, Malathion and Trichlorfon, and the lethalithy observed at the end of a 7-day period varied according to the active principle of each. HCH was the most effective by the oral route, killing 100% of the insects, except P. megistus (95.7%) and T. pseudomaculata (94.1%). Trichlorfon killed the insects at rates ranging from 71.8% (T. vitticeps) to 98% (R. prolixus). Malathion was slightly less efficient, killing the insects at rates from 56.8% (T. vitticeps) to 97% (T.brasiliensis). DDT was the least effective, with a killing rate of 10% (T. vitticeps) to 75% (T.brasiliensis). Since the tests were performed at room temperature, we suggest that baits of this type should be tried for the control of triatomines in the field.
Resumo:
The members of the subfamily Triatominae (Hemiptera : Reduviidae) comprise a great number of species of medical importance in the transmission of the T. cruzi (American trypanosomiasis). The aim of this study was to contribute to the knowledge about the chemical composition in proteins, lipids, lipoproteins, and carbohydrates of vectors of Chagas' disease corresponding to twelve members of the subfamily Triatominae. This study was carried out in ninphs of the fifth instar and adult males of the species: T. delpontei, T. dimidiata, T. guasayana, T. infestans, T. mazzotti, T. pallidipennis, T. patagonica, T. platensis, T. rubrovaria, T. sordida of the Triatoma genus, and D. maximus and P. megistus of the Dipatalogaster and Panstrongylus genera respectively. The results show on one hand, qualitative differences in the protein composition, and on the other hand, similarity in the lipoprotein profiles. Lipids, proteins, and carbohydrates did not show significant differences between species or/and stages.
Resumo:
Dissertation presented to obtain a Ph.D degree in Engineering and Technology Sciences, Gene Therapy at the Instituto de Tecnologia Quimica e Biológica, Universidade Nova de Lisboa
Resumo:
A triatomine survey was conducted in three rural settlements of Nicaragua (Santa Rosa, Quebrada Honda and Poneloya) where Chagas' disease is endemic, to determine rates of house infestation, evaluate the housing condition and to asess the performance of the María sensor box in detection of domestic vectors. A total of 184 households were selected and vectors were sought by the methods of timed manual capture and by sensor boxes. The sole vectors species found in this study was Triatoma dimidiata. Of the examined bugs 50, 60 and 33%, in the respective communities, were infected with T. cruzi. The rates of house infestation as determined by manual capture and sensor boxes were respectively, 48.3% and 54.2% in Santa Rosa, 29.8% and 51.2% in Quebrada Honda and in Poneloya 3.8 and 5.9% with significant difference between the methods in Quebrada Honda. When compared with the manual capture, the Maria sensor box detected vectors in 71.4% of positive houses in two of the communities but also was able to detect bugs in 39.3% and 41.1% of houses where manual capture had been negative. Housing condition was evaluated according to three structural parameters, in this way, in the first community 79.2% of houses were classified as bad, 20.8% as regular; in the second one 42.5% were bad and 57.5% regular, whereas in the third 62.5% of the houses were regular. Rates of infestation did not differ greatly between the different housing conditions. Our results show that the sensor box is as efficient as manual capture and could be implemented in our country.
Resumo:
Human bartonellosis is found predominantly in Perú2, 6, 8, 12, 15, as well as in Ecuador3, 7, 10 and Colombia13, 15. In Peru, the disease is restricted to the valleys of the western-side and a few inter-andean and eastern-slopes of the andean valleys6, 15, 18 at altitudes between 1000 and 3200 masl. Most human cases are reported from the regions of Chavin, Nor Oriental del Marañon and Lima16. Lutzomyia verrucarum is presumed to be the only vector of human bartonellosis in the valleys of Peru1, 2, 8, 11, 17, 19/ Our research objetive was to detect the presence of Lu. verrucarum in various localities known to be endemic for human bartonellosis in three provinces of Region Nor Oriental del Marañon. Sandfly collections were made between 1987 and 1992 during four visits to bartonellosis-endemic provinces: San Ignacio (districts of San José de Lourdes: 1020-1260 m and La Coipa: 1200-1560 m), Jaén (districts of Santa Rosa: 1300-1680 m and Jaén: 1220-1680 m) and Utcubamba (districts of Lonya Grande: 1200 m and El Milagro: 1200-1540 m)