993 resultados para Annexin V


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Strong platelet activation results in a redistribution of negatively charged phospholipids from the cytosolic to the outer leaflet of the cellular membrane. Annexin V has a high affinity to negatively charged phospholipids and can be used to identify procoagulant platelets. Formaldehyde fixation can cause factitious Annexin V binding. Our aim was to evaluate a method for fixing platelets avoiding additional Annexin V binding. We induced expression of negatively charged phospholipids on the surface of a fraction of platelets by combined activation with convulxin and thrombin in the presence of Annexin V-fluorescein isothiocyanate and calcium. Aliquots of resting and activated platelets were fixed with a low concentration, calcium-free formaldehyde solution. Both native platelets and fixed platelets were analyzed by flow cytometry immediately and after a 24-h storage at 4°C. We observed that the percentage of Annexin V positive resting platelets ranged from 1.5 to 9.3% for the native samples and from 0.4 to 12.8% for the fixed samples (P=0.706, paired t-test). The amount of Annexin V positive convulxin/thrombin activated platelets varied from 12.9 to 35.4% without fixation and from 15.3 to 36.3% after formalin fixation (P=0.450). After a 24-h storage at 4°C, Annexin V positive platelets significantly increased both in the resting and in the convulxin/thrombin activated samples of native platelets (both P<0.001), while results for formalin fixed platelets did not differ from baseline values (P=0.318 for resting fixed platelets; P=0.673 for activated fixed platelets). We conclude that platelet fixation with a low concentration, calcium-free formaldehyde solution does not alter the proportion of Annexin V positive platelets. This method can be used to investigate properties of procoagulant platelets by multicolor flow-cytometric analysis requiring fixation steps.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE: To look for apoptosis pathways involved in corneal endothelial cell death during acute graft rejection and to evaluate the potential role of nitric oxide in this process. MATERIALS AND METHODS: Corneal buttons from Brown-Norway rats were transplanted into Lewis rat corneas. At different time intervals after transplantation, apoptosis was assessed by diamino-2-phenylindol staining and annexin-V binding on flat-mount corneas, and by terminal transferase dUTP nick end labeling (TUNEL), caspase-3 dependent and leukocyte elastase inhibitor (LEI)/LDNase II caspase-independent pathways on sections. Inducible nitric oxide synthase (NOS-II) expression and the presence of nitrotyrosine were assayed by immunohistochemistry. RESULTS: Graft endothelial cells demonstrated nuclear fragmentation and LEI nuclear translocation, annexin-V binding, and membranes bleb formation. Apoptosis associated with caspase-3 activity or TUNEL-positive reaction was not observed at any time either in the graft or in the recipient corneal endothelial cells. During 14 days posttransplantation, the recipient corneal endothelial cells remained unaltered and their number unchanged in all studied corneas. NOS-II was expressed in infiltrating cells present within the graft. This expression was closely associated with the presence of nitrotyrosine in endothelial and infiltrating cells. CONCLUSION: During the time course of corneal graft rejection, graft endothelial cells undergo apoptosis. Apoptosis is caspase 3 independent and TUNEL negative and is, probably, carried out by an alternative pathway driven by an LEI/L-Dnase II. Peroxynitrite formation may be an additional mechanism for cell toxicity and programmed cell death of the graft endothelial cells during the rejection process in this model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE: To evaluate the antimitotic and toxic effects of 5-chlorouracil (5-CU) and 5-fluorouracil (5-FU) and study their potential to delay filtering bleb closure in the rabbit eye when released by poly(ortho esters) (POE). METHODS: Rabbit Tenon fibroblasts and human conjunctival cells were incubated with various 5-CU and 5-FU concentrations. Antiproliferative effects and toxicity were evaluated at 24 and 72 hours by monotetrazolium, neutral red, and Hoechst tests and cell counting. Mechanisms of cell death were evaluated using TUNEL assay, annexin V binding, immunohistochemistry for anti-apoptosis-inducing factor (AIF) and LEI/L-DNase II. Trabeculectomy was performed in pigmented rabbits. Two hundred microliters of POE loaded with 1% wt/wt 5-FU or 5-CU was injected into the subconjunctival space after surgery. Intraocular pressure (IOP) and bleb persistence were monitored for 150 days. RESULTS: In vitro, 5-FU showed a higher antiproliferative effect and a more toxic effect than 5-CU. 5-FU induced cell necrosis, whereas 5-CU induced mostly apoptosis. The apoptosis induced by 5-CU was driven through a non-caspase-dependent pathway involving AIF and LEI/L-DNase II. In vivo, at 34 days after surgery, the mean IOP in the POE/5-CU-treated group was 83% of the baseline level and only 40% in the POE/5-FU-treated group. At 100 days after surgery, IOP was still decreased in the POE/5-CU group when compared with the controls and still inferior to the preoperative value. The mean long-term IOP, with all time points considered, was significantly (P < 0.0001) decreased in the POE/5-CU-treated group (6.0 +/- 2.4 mm Hg) when compared with both control groups, the trabeculectomy alone group (7.6 +/- 2.9 mm Hg), and the POE alone group (7.5 +/- 2.6 mm Hg). Histologic analysis showed evidence of functioning blebs in the POE-5-CU-treated eyes along with a preserved structure of the conjunctiva epithelium. CONCLUSIONS: The slow release of 5-CU from POE has a longstanding effect on the decrease of IOP after glaucoma-filtering surgery in the rabbit eye. Thus, the slow release of POE/5-CU may be beneficial for the prevention of bleb closure in patients who undergo complicated trabeculectomy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The main difficulty in the successful treatment of metastatic melanoma is that this type of cancer is known to be resistant to chemotherapy. Chemotherapy remains the treatment of choice, and dacarbazine (DTIC) is the best standard treatment. The DM-1 compound is a curcumin analog that possesses several curcumin characteristics, such as antiproliferative, antitumor, and antimetastatic properties. The objective of this study was to evaluate the signaling pathways involved in melanoma cell death after treatment with DM-1 compared to the standard agent for melanoma treatment, DTIC. Cell death was evaluated by flow cytometry for annexin V and iodide propide, cleaved caspase 8, and TNF-R1 expression. Hoechst 33342 staining was evaluated by fluorescent microscopy; lipid peroxidation and cell viability (MTT) were evaluated by colorimetric assays. The antiproliferative effects of the drugs were evaluated by flow cytometry for cyclin D1 and Ki67 expression. Mice bearing B16F10 melanoma were treated with DTIC, DM-1, or both therapies. DM-1 induced significant apoptosis as indicated by the presence of cleaved caspase 8 and an increase in TNF-R1 expression in melanoma cells. Furthermore, DM-1 had antiproliferative effects in this the same cell line. DTIC caused cell death primarily by necrosis, and a smaller melanoma cell population underwent apoptosis. DTIC induced oxidative stress and several physiological changes in normal melanocytes, whereas DM-1 did not significantly affect the normal cells. DM-1 antitumor therapy in vivo showed tumor burden decrease with DM-1 monotherapy or in combination with DTIC, besides survival rate increase. Altogether, these data confirm DM-1 as a chemotherapeutic agent with effective tumor control properties and a lower incidence of side effects in normal cells compared to DTIC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Peroxisome proliferator activated receptors (PPARs) are nuclear hormone receptors involved in genetic control of many cellular processes. PPAR and PPAR have been implicated in colonic malignancy. Here we provide three lines of evidence suggesting an inhibitory role for PPAR in colorectal cancer development. METHODS: Levels of PPAR mRNA and protein in human colorectal cancers were compared with matched non-malignant mucosa using RNAse protection and western blotting. APC(Min)/+ mice were randomised to receive the PPAR activator methylclofenapate 25 mg/kg or vehicle for up to 16 weeks, and small and large intestinal polyps were quantified by image analysis. The effect of methylclofenapate on serum stimulated mitogenesis (thymidine incorporation), linear cell growth, and annexin V and propidium iodide staining were assessed in human colonic epithelial cells. RESULTS: PPAR (mRNA and protein) expression levels were significantly depressed in colorectal cancer compared with matched non-malignant tissue. Methylclofenapate reduced polyp area in the small intestine from 18.7 mm(2) (median (interquartile range 11.1, 26.8)) to 9.90 (4.88, 13.21) mm(2) (p=0.003) and in the colon from 9.15 (6.31, 10.5) mm(2) to 3.71 (2.71, 5.99) mm(2) (p=0.009). Methylclofenapate significantly reduced thymidine incorporation and linear cell growth with no effect on annexin V or propidium iodide staining. CONCLUSIONS: PPAR may inhibit colorectal tumour progression, possibly via inhibition of proliferation, and may be an important therapeutic target.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Targeted delivery of anticancer chemotherapeutics such as mitoxantrone (MTX) can significantly intensify their cytotoxic effects selectively in solid tumors such as breast cancer. In the current study, folic acid (FA)-armed and MTX-conjugated magnetic nanoparticles (MNPs) were engineered for targeted eradication of folate receptor (FR)-positive cancerous cells. Polyethylene glycol (PEG), FA and MTX were covalently conjugated onto the MNPs to engineer the PEGylated FA-MTX-MNPs. The internalization studies were performed using fluorescein isothiocyanate (FITC)-labeled FA-decorated MNPs (FA-FITC-MNPs) in both FR-positive MCF-7 cells and FR-negative A549 cells by means of fluorescence microscopy and flow cytometry. The cellular and molecular impacts of FA-MTX-MNPs were examined using trypan blue cell viability and FITC-labeled annexin V apoptosis assays and 4',6-diamidino-2-phenylindole (DAPI) staining, DNA ladder and quantitative polymerase chain reaction (qPCR) assays. RESULTS: The FR-positive MCF-7 cells showed significant internalization of the FA-FITC-MNPs, but not the FR-negative A549 cells. The FR-positive cells treated with the PEGylated FA-MTX-MNPs exhibited the IC50 values of 3 μg/mL and 1.7 μg/mL, 24 h and 48 h post-treatment, respectively. DAPI staining and DNA ladder assays revealed significant condensation of nucleus and fragmentation of genomic DNA in the FR-positive MCF-7 cells treated with the PEGylated FA-MTX-MNPs as compared to the FR-negative A549 cells. The FITC-labeled annexin V assay confirmed emergence of late apoptosis (>80%) in the FR-positive MCF-7 cells treated with the PEGylated FA-MTX-MNPs, but not in the FR-negative A549 cells. The qPCR analysis confirmed profound cytotoxic impacts via alterations of apoptosis-related genes induced by MTX-FA-MNPs in MCF-7 cells, but not in the A549 cells. CONCLUSION: Our findings evince that the engineered PEGylated FA-MTX-MNPs can be specifically taken up by the FR-positive malignant cells and effectively demolish them through up-regulation of Bcl-2-associated X protein (Bax) and Caspase 9 and down-regulation of AKt. Hence, the engineered nanosystem is proposed for simultaneous targeted imaging and therapy of various cancers overexpressing FRs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Increasing evidences link T helper 17 (Th17) cells with multiple sclerosis (MS). In this context, interleukin-22 (IL-22), a Th17-linked cytokine, has been implicated in blood brain barrier breakdown and lymphocyte infiltration. Furthermore, polymorphism between MS patients and controls has been recently described in the gene coding for IL-22 binding protein (IL-22BP). Here, we aimed to better characterize IL-22 in the context of MS. METHODS: IL-22 and IL-22BP expressions were assessed by ELISA and qPCR in the following compartments of MS patients and control subjects: (1) the serum, (2) the cerebrospinal fluid, and (3) immune cells of peripheral blood. Identification of the IL-22 receptor subunit, IL-22R1, was performed by immunohistochemistry and immunofluorescence in human brain tissues and human primary astrocytes. The role of IL-22 on human primary astrocytes was evaluated using 7-AAD and annexin V, markers of cell viability and apoptosis, respectively. RESULTS: In a cohort of 141 MS patients and healthy control (HC) subjects, we found that serum levels of IL-22 were significantly higher in relapsing MS patients than in HC but also remitting and progressive MS patients. Monocytes and monocyte-derived dendritic cells contained an enhanced expression of mRNA coding for IL-22BP as compared to HC. Using immunohistochemistry and confocal microscopy, we found that IL-22 and its receptor were detected on astrocytes of brain tissues from both control subjects and MS patients, although in the latter, the expression was higher around blood vessels and in MS plaques. Cytometry-based functional assays revealed that addition of IL-22 improved the survival of human primary astrocytes. Furthermore, tumor necrosis factor α-treated astrocytes had a better long-term survival capacity upon IL-22 co-treatment. This protective effect of IL-22 seemed to be conferred, at least partially, by a decreased apoptosis. CONCLUSIONS: We show that (1) there is a dysregulation in the expression of IL-22 and its antagonist, IL-22BP, in MS patients, (2) IL-22 targets specifically astrocytes in the human brain, and (3) this cytokine confers an increased survival of the latter cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: Second mitochondria-derived activator of caspase (SMAC)-mimetics are a new class of targeted drugs that specifically induce apoptotic cancer cell death and block pro-survival signaling by antagonizing selected members of the inhibitor of apoptosis protein (IAP) family. MATERIAL AND METHODS: The present study was designed to investigate the radiosensitizing effect and optimal sequence of administration of the novel SMAC-mimetic Debio 1143 in vitro and in vivo. Apoptosis, alteration of DNA damage repair (DDR), and tumor necrosis factor-alpha (TNF-α) signaling were examined. RESULTS: In vitro, Debio 1143 displayed anti-proliferative activity and enhanced intrinsic radiation sensitivity in 5/6 head and neck squamous cell carcinoma (HNSCC) cell lines in a synergistic manner. In vivo, Debio 1143 dose-dependently radio-sensitized FaDu and SQ20B xenografts, resulting in complete tumor regression in 8/10 FaDu-xenografted mice at the high dose level. At the molecular level, Debio 1143 combined with radiotherapy (RT) induced enhancement of caspase-3 activity, increase in Annexin V-positive cells and karyopyknosis, and increase in TNF-α mRNA levels. Finally, in a neutralization experiment using a TNF-α-blocking antibody and a caspase inhibitor, it was shown that the radiosensitizing effect of Debio 1143 is mediated by caspases and TNF-α. CONCLUSIONS: These results demonstrate that the novel SMAC-mimetic Debio 1143 is a radiosensitizing agent that is worthy of further investigation in clinical trials in combination with radiotherapy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We demonstrated that 4 mM butyrate induces apoptosis in murine peritoneal macrophages in a dose- and time-dependent manner as indicated by studies of cell viability, flow cytometric analysis of annexin-V binding, DNA ladder pattern and the determination of hypodiploid DNA content. The activity of caspase-3 was enhanced during macrophage apoptosis induced by butyrate and the caspase inhibitor z-VAD-FMK (100 µM) inhibited the butyrate effect, indicating the major role of the caspase cascade in the process. The levels of butyrate-induced apoptosis in macrophages were enhanced by co-treatment with 1 µg/ml bacterial lipopolysaccharide (LPS). However, our data indicate that apoptosis induced by butyrate and LPS involves different mechanisms. Thus, LPS-induced apoptosis was only observed when macrophages were primed with IFN-gamma and was partially dependent on iNOS, TNFR1 and IRF-1 functions as determined in experiments employing macrophages from various knockout mice. In contrast, butyrate-induced macrophage apoptosis was highly independent of IFN-gamma priming and of iNOS, TNFR1 and IRF-1 functions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The expression of P53, Bcl-2, Bax, Bag-1, and Mcl-1 proteins in CD5/CD20-positive B-chronic lymphocytic leukemia (B-CLL) cells from 30 typical CLL patients was evaluated before and after 48 h of incubation with 10-6 M fludarabine using multiparametric flow cytometric analysis. Protein expression was correlated with annexin V expression, Rai modified clinical staging, lymphocyte doubling time, and previous treatment. Our main goal was to determine the predictive value of these proteins in CLL cells in terms of disease evolution. Bcl-2 expression decreased from a median fluorescence index (MFI) of 331.71 ± 42.2 to 245.81 ± 52.2 (P < 0.001) after fludarabine treatment, but there was no difference between viable cells (331.57 ± 44.6 MFI) and apoptotic cells (331.71 ± 42.2 MFI) before incubation (P = 0.859). Bax expression was higher in viable cells (156.24 ± 32.2 MFI) than in apoptotic cells (133.56 ± 35.7 MFI) before incubation, probably reflecting defective apoptosis in CLL (P = 0.001). Mcl-1 expression was increased in fludarabine-resistant cells and seemed to be a remarkable protein for the inhibition of the apoptotic process in CLL (from 233.59 ± 29.8 to 252.04 ± 35.5; P = 0.033). After fludarabine treatment, Bag-1 expression was increased in fludarabine-resistant cells (from 425.55 ± 39.3 to 447.49 ± 34.5 MFI, P = 0.012), and interestingly, this higher expression occurred in patients who had a short lymphocyte doubling time (P = 0.022). Therefore, we could assume that Bag-1 expression in such situation might identify CLL patients who will need treatment earlier.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of the present study was to determine the effect of the combination of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and adriamycin (ADM) on the human breast cancer cell line MCF-7 and to identify potential mechanisms of apoptosis. Cell viability was analyzed by the MTT assay and the synergistic effect was assessed by the Webb coefficient. Apoptosis was quantified using the annexin V-FITC and propidium iodide staining flow cytometry. The mRNA expression of TRAIL receptors was measured by RT-PCR. Changes in the quantities of Bax and caspase-9 proteins were determined by Western blot. MCF-7 cells were relatively resistant to TRAIL (IC50 >10 µg/mL), while MCF-7 cells were sensitive to ADM (IC50 <10 µg/mL). A subtoxic concentration of ADM (0.5 µg/mL) combined with 0.1, 1, or 10 µg/mL TRAIL had a synergistic cytotoxic effect on MCF-7 cells, which was more marked with the combination of TRAIL (0.1 µg/mL) and ADM (0.5 µg/mL). In addition, the combined treatment with TRAIL and ADM significantly increased cell apoptosis from 9.8% (TRAIL) or 17% (ADM) to 38.7%, resulting in a synergistic apoptotic effect, which is proposed to be mediated by up-regulation of DR4 and DR5 mRNA expression and increased expression of Bax and caspase-9 proteins. These results suggest that the combination of TRAIL and ADM might be a promising therapy for breast cancer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Eighty-six newly diagnosed multiple myeloma (MM) patients from a public hospital of São Paulo (Brazil) were evaluated by cIg-FISH for the presence of del(13)(q14), t(4;14)(p16.3;q32) and del(17)(p13). These abnormalities were observed in 46.5, 9.3, and 7.0% of the patients, respectively. In order to identify the possible role of del(13)(q14) in the physiopathology of MM, we investigated the association between this abnormality and the proliferative and apoptotic indexes of plasma cells. When cases demonstrating t(4;14)(p16.3;q32) and del(17)(p13) were excluded from the analysis, we observed a trend towards a positive correlation between the proportion of cells carrying del(13)(q14) and plasma cell proliferation, determined by Ki-67 expression (r = 0.23, P = 0.06). On the other hand, no correlation between the proportion of cells carrying del(13)(q14) and apoptosis, determined by annexin-V staining, was detected (r = 0.05, P = 0.69). In general, patients carrying del(13)(q14) did not have lower survival than patients without del(13)(q14) (P = 0.15), but patients with more than 80% of cells carrying del(13)(q14) showed a lower overall survival (P = 0.033). These results suggest that, when del(13)(q14) is observed in a high proportion of malignant cells, it may have a role in determining MM prognosis. Another finding was a statistically significant lower overall survival of patients with t(4;14)(p16.3;q32) (P = 0.026). In the present study, almost half the patients with t(4;14)(p16.3;q32) died just after diagnosis, before starting treatment. This fact suggests that, in São Paulo, there may be even more patients with this chromosomal abnormality, but they probably die before being diagnosed due to unfavorable socioeconomic conditions. This could explain the low prevalence of this chromosomal abnormality observed in the present study.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gliomas are the most common and malignant primary brain tumors in humans. Studies have shown that classes of kaurene diterpene have anti-tumor activity related to their ability to induce apoptosis. We investigated the response of the human glioblastoma cell line U87 to treatment with ent-kaur-16-en-19-oic acid (kaurenoic acid, KA). We analyzed cell survival and the induction of apoptosis using flow cytometry and annexin V staining. Additionally, the expression of anti-apoptotic (c-FLIP and miR-21) and apoptotic (Fas, caspase-3 and caspase-8) genes was analyzed by relative quantification (real-time PCR) of mRNA levels in U87 cells that were either untreated or treated with KA (30, 50, or 70 µM) for 24, 48, and 72 h. U87 cells treated with KA demonstrated reduced viability, and an increase in annexin V- and annexin V/PI-positive cells was observed. The percentage of apoptotic cells was 9% for control cells, 26% for cells submitted to 48 h of treatment with 50 µM KA, and 31% for cells submitted to 48 h of treatment with 70 µM KA. Similarly, in U87 cells treated with KA for 48 h, we observed an increase in the expression of apoptotic genes (caspase-8, -3) and a decrease in the expression of anti-apoptotic genes (miR-21 and c-FLIP). KA possesses several interesting properties and induces apoptosis through a unique mechanism. Further experiments will be necessary to determine if KA may be used as a lead compound for the development of new chemotherapeutic drugs for the treatment of primary brain tumors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Excessive oxidative stress in pancreatic β cells, caused by glucose and fatty acids, is associated with the pathogenesis of type 2 diabetes. Mogrosides have shown antioxidant and antidiabetic activities in animal models of diabetes, but the underlying mechanisms remain unclear. This study evaluated the antioxidant effect of mogrosides on insulinoma cells under oxidative stress caused by palmitic acid, and investigated the underlying molecular mechanisms. Mouse insulinoma NIT-1 cells were cultured in medium containing 0.75 mM palmitic acid, mimicking oxidative stress. The effects of 1 mM mogrosides were determined with the dichlorodihydrofluorescein diacetate assay for intracellular reactive oxygen species (ROS) and FITC-Annexin V/PI assay for cell apoptosis. Expression of glucose transporter-2 (GLUT2) and pyruvate kinase was determined by semi-quantitative reverse-transcription polymerase chain reaction. Palmitic acid significantly increased intracellular ROS concentration 2-fold (P<0.05), and decreased expression of GLUT2 (by 60%, P<0.05) and pyruvate kinase (by 80%, P<0.05) mRNAs in NIT-1 cells. Compared with palmitic acid, co-treatment with 1 mM mogrosides for 48 h significantly reduced intracellular ROS concentration and restored mRNA expression levels of GLUT2 and pyruvate kinase. However, mogrosides did not reverse palmitic acid-induced apoptosis in NIT-1 cells. Our results indicate that mogrosides might exert their antioxidant effect by reducing intracellular ROS and regulating expression of genes involved in glucose metabolism. Further research is needed to achieve a better understanding of the signaling pathway involved in the antioxidant effect of mogrosides.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Les modifications post-transcriptionnelles de l’ARN messager (ARNm), comme l’épissage alternatif, jouent un rôle important dans la régulation du développement embryonnaire, de la fonction cellulaire et de l’immunité. De nouvelles évidences révèlent que l’épissage alternatif serait également impliqué dans la régulation de la maturation et de l’activation des cellules du système hématopoïétique. Le facteur hnRNP L a été identifié comme étant le principal régulateur de l’épissage alternatif du gène codant pour le récepteur CD45 in vitro. Le récepteur CD45 est une tyrosine phosphatase exprimée par toutes les cellules du système hématopoïétique qui contrôle le développement et l’activation des lymphocytes T. Dans un premier temps, nous avons étudié la fonction du facteur hnRNP L dans le développement des lymphocytes T et dans l’épissage de l’ARNm de CD45 in vivo en utilisant des souris dont le gène de hnRNP L a été supprimé spécifiquement dans les cellules T. La délétion de hnRNP L dans les thymocytes résulte en une expression aberrante des différents isoformes de CD45 avec une prédominance de l'isoforme CD45RA qui est généralement absent dans le thymus. Une conséquence de la délétion de hnRNP L est une diminution de la cellularité du thymus causée par un blocage partiel du développement des cellules pré-T au stade DN4. Cette réduction du nombre de cellules dans le thymus n’est pas liée à une hausse de la mort cellulaire. Les thymocytes déficients pour hnRNP L démontrent plutôt une prolifération augmentée comparée aux thymocytes sauvages due à une hyper-activation des kinases Lck, Erk1/2 et Akt. De plus, la délétion de hnRNP L dans le thymus cause une perte des cellules T en périphérie. Les résultats des expériences in vitro suggèrent que cette perte est principalement due à un défaut de migration des thymocytes déficients pour hnRNP L du thymus vers la périphérie en réponse aux chimiokines. L’épissage alternatif de CD45 ne peut expliquer ce phénotype mais l’identification de cibles par RNA-Seq a révélé un rôle de hnRNP L dans la régulation de l’épissage alternatif de facteurs impliqués dans la polymérisation de l’actine. Dans un second temps, nous avons étudié le rôle de hnRNP L dans l’hématopoïèse en utilisant des souris dont la délétion de hnRNP L était spécifique aux cellules hématopoïétiques dans les foies fœtaux et la moelle osseuse. L’ablation de hnRNP L réduit le nombre de cellules progénitrices incluant les cellules progénitrices lymphocytaires (CLPs), myéloïdes (CMPs, GMPs) et mégakaryocytes-érythrocytaires (MEPs) et une perte des cellules hématopoïétiques matures. À l’opposé des cellules progénitrices multipotentes (MPPs) qui sont affectées en absence de hnRNP L, la population de cellules souches hématopoïétiques (HSCs) n’est pas réduite et prolifère plus que les cellules contrôles. Cependant, les HSCs n’exprimant pas hnRNP L sont positives pour l'Annexin V et expriment CD95 ce qui suggère une mort cellulaire prononcée. Comme pour les thymocytes, une analyse par RNA-Seq des foies fœtaux a révélé différents gènes cibles de hnRNP L appartenant aux catégories reliées à la mort cellulaire, la réponse aux dommages à l’ADN et à l’adhésion cellulaire qui peuvent tous expliquer le phénotype des cellules n’exprimant pas le gène hnRNP L. Ces résultats suggèrent que hnRNP L et l’épissage alternatif sont essentiels pour maintenir le potentiel de différenciation des cellules souches hématopoïétiques et leur intégrité fonctionnelle. HnRNP L est aussi crucial pour le développement des cellules T par la régulation de l’épissage de CD45 ainsi que pour leur migration.