924 resultados para Angular acceleration
Resumo:
In the field of rolling element bearing diagnostics, envelope analysis has gained in the last years a leading role among the different digital signal processing techniques. The original constraint of constant operating speed has been relaxed thanks to the combination of this technique with the computed order tracking, able to resample signals at constant angular increments. In this way, the field of application of this technique has been extended to cases in which small speed fluctuations occur, maintaining high effectiveness and efficiency. In order to make this algorithm suitable to all industrial applications, the constraint on speed has to be removed completely. In fact, in many applications, the coincidence of high bearing loads, and therefore high diagnostic capability, with acceleration-deceleration phases represents a further incentive in this direction. This chapter presents a procedure for the application of envelope analysis to speed transients. The effect of load variation on the proposed technique will be also qualitatively addressed.
Resumo:
This paper introduces an improved line tracker using IMU and vision data for visual servoing tasks. We utilize an Image Jacobian which describes motion of a line feature to corresponding camera movements. These camera motions are estimated using an IMU. We demonstrate impacts of the proposed method in challenging environments: maximum angular rate ~160 0/s, acceleration ~6m /s2 and in cluttered outdoor scenes. Simulation and quantitative tracking performance comparison with the Visual Servoing Platform (ViSP) are also presented.
Jacobian-free Newton-Krylov methods with GPU acceleration for computing nonlinear ship wave patterns
Resumo:
The nonlinear problem of steady free-surface flow past a submerged source is considered as a case study for three-dimensional ship wave problems. Of particular interest is the distinctive wedge-shaped wave pattern that forms on the surface of the fluid. By reformulating the governing equations with a standard boundary-integral method, we derive a system of nonlinear algebraic equations that enforce a singular integro-differential equation at each midpoint on a two-dimensional mesh. Our contribution is to solve the system of equations with a Jacobian-free Newton-Krylov method together with a banded preconditioner that is carefully constructed with entries taken from the Jacobian of the linearised problem. Further, we are able to utilise graphics processing unit acceleration to significantly increase the grid refinement and decrease the run-time of our solutions in comparison to schemes that are presently employed in the literature. Our approach provides opportunities to explore the nonlinear features of three-dimensional ship wave patterns, such as the shape of steep waves close to their limiting configuration, in a manner that has been possible in the two-dimensional analogue for some time.
Resumo:
Angular distribution of microscopic ion fluxes around nanotubes arranged into a dense ordered pattern on the surface of the substrate is studied by means of multiscale numerical simulation. The Monte Carlo technique was used to show that the ion current density is distributed nonuniformly around the carbon nanotubes arranged into a dense rectangular array. The nonuniformity factor of the ion current flux reaches 7 in dense (5× 1018 m-3) plasmas for a nanotube radius of 25 nm, and tends to 1 at plasma densities below 1× 1017 m-3. The results obtained suggest that the local density of carbon adatoms on the nanotube side surface, at areas facing the adjacent nanotubes of the pattern, can be high enough to lead to the additional wall formation and thus cause the single- to multiwall structural transition, and other as yet unexplained nanoscience phenomena.
Resumo:
Background: In recent years, there have been investigations concerning upper-limbs kinematics by various devices. The latest generation of smartphones often includes inertial sensors with subunits which can detect inertial kinematics. The use of smartphones is presented as a convenient and portable analysis method for studying kinematics in terms of angular mobility and linear acceleration Objective: The aim of this study was to study humerus kinematics through six physical properties that correspond to angular mobility and acceleration in the three axes of space, obtained by a smartphone. Methods: This cross-sectional study recruited healthy young adult subjects. Descriptive and anthropometric independent variables related to age, gender, weight, size, and BMI were included. Six physical properties were included corresponding to two dependent variables for each of three special axes: mobility angle (degrees) and lineal acceleration (meters/seconds2), which were obtained thought the inertial measurement sensor embedded in the iPhone4 smartphone equipped with three two elements for the detection of kinematic variables: a gyroscope and an accelerometer. Apple uses an LIS302DL accelerometer in the iPhone4. The application used to obtain kinematic data was xSensor Pro, Crossbow Technology, Inc., available at the Apple AppStore. The iPhone4 has storage capacity of 20MB. The data-sampling rate was set to 32 Hz, and the data for each analytical task was transmitted as email for analysis and postprocessing The iPhone4 was placed in the right half of the body of each subject located in the middle third of the humerus slightly posterior snugly secured by a neoprene fixation belt. Tasks were explained concisely and clearly. The beginning and the end were decided by a verbal order by the researcher. Participants were placed standing, starting from neutral position, performing the following analytical tasks: 180º right shoulder abduction (eight repetitions) and, after a break of about 3 minutes, 180º right shoulder flexion (eight repetitions). Both tasks were performed with the elbow extended, wrist in neutral position and the palmar area of the hand toward the midline at the beginning and end of the movement. Results: A total of 11 subjects (8 men, 3 woman) were measured, whose mean of age was 24.7 years (SD = 4.22 years) and their average BMI was 22.64 Kg/m2 (SD = 2.29 Kg/m2). The mean of angular mobility collected by the smartphone was bigger in pitch axis for flexion (= 157.28°, SD= 12.35°) and abduction (= 151.71°, SD= 9.70°). With regard to acceleration, the highest peak mean value was shown in the Y motion axis during flexion (= 19.5°/s2, SD = 0.8°/s2) and abduction (= 19.4°/s2, SD = 0.8°/s2). Also, descriptive graphics of analytical tasks performed were obtained. Conclusions: This study shows how humerus contributes to upper-limb motion and it identified movement patterns. Therefore, it supports smartphone as a useful device to analyze upper-limb kinematics. Thanks to this study it´s possible to develop a simple application that facilitates the evaluation of the patient.
Resumo:
The authors have collaboratively used a graphical language to describe their shared knowledge of a small domain of mathematics, which has in turn scaffolded their re-development of a related curriculum for mathematics acceleration. This collaborative use of the graphical language is reported as a simple descriptive case study. This leads to an evaluation of the graphical language’s usefulness as a tool to support the articulation of the structure of mathematics knowledge. In turn, implications are drawn for how the graphical language may be utilised as the detail of the curriculum is further elaborated and communicated to teachers.
Resumo:
BACKGROUND: Postural instability is one of the major complications found in stroke survivors. Parameterising the functional reach test (FRT) could be useful in clinical practice and basic research. OBJECTIVES: To analyse the reliability, sensitivity, and specificity in the FRT parameterisation using inertial sensors for recording kinematic variables in patients who have suffered a stroke. DESIGN: Cross-sectional study. While performing FRT, two inertial sensors were placed on the patient's back (lumbar and trunk). PARTICIPANTS: Five subjects over 65 who suffer from a stroke. MEASUREMENTS: FRT measures, lumbosacral/thoracic maximum angular displacement, maximum time of lumbosacral/thoracic angular displacement, time return initial position, and total time. Speed and acceleration of the movements were calculated indirectly. RESULTS: FRT measure is 12.75±2.06 cm. Intrasubject reliability values range from 0.829 (time to return initial position (lumbar sensor)) to 0.891 (lumbosacral maximum angular displacement). Intersubject reliability values range from 0.821 (time to return initial position (lumbar sensor)) to 0.883 (lumbosacral maximum angular displacement). FRT's reliability was 0.987 (0.983-0.992) and 0.983 (0.979-0.989) intersubject and intrasubject, respectively. CONCLUSION: The main conclusion could be that the inertial sensors are a tool with excellent reliability and validity in the parameterization of the FRT in people who have had a stroke.
Resumo:
Background Balance dysfunction is one of the most common problems in people who suffer stroke. To parameterize functional tests standardized by inertial sensors have been promoted in applied medicine. The aim of this study was to compare the kinematic variables of the Functional Reach Test (FRT) obtained by two inertial sensors placed on the trunk and lumbar region between stroke survivors (SS) and healthy older adults (HOA) and to analyze the reliability of the kinematic measurements obtained. Methods Cross-sectional study. Five SS and five HOA over 65. A descriptive analysis of the average range as well as all kinematic variables recorded was developed. The intrasubject and intersubject reliability of the measured variables was directly calculated. Results In the same intervals, the angular displacement was greater in the HOA group; however, they were completed at similar times for both groups, and HOA conducted the test at a higher speed and greater acceleration in each of the intervals. The SS values were higher than HOA values in the maximum and minimum acceleration in the trunk and in the lumbar region. Conclusions The SS show less functional reach, a narrower, slower and less accelerated movement during the FRT execution, but with higher peaks of acceleration and speed when they are compared with HOA.
Resumo:
Background Physical conditions through gait and other functional task are parameters to consider for frailty detection. The aim of the present study is to measure and describe the variability of acceleration, angular velocity and trunk displacement in the ten meter Extended Timed Get-Up-and-Go test in two groups of frail and non-frail elderly people through instrumentation with the iPhone4® smartphone. Secondly, to analyze the differences and performance of the variance between the study groups (frail and non-frail). This is a cross-sectional study of 30 subjects aged over 65 years, 14 frail subjects and 16 non-frail subjects. Results The highest difference between groups in the Sit-to-Stand and Stand-to-Sit subphases was in the y axis (vertical vector). The minimum acceleration in the Stand-to-Sit phase was -2.69 (-4.17 / -0.96) m/s2 frail elderly versus -8.49 (-12.1 / -5.23) m/s2 non-frail elderly, p < 0.001. In the Gait Go and Gait Come subphases the biggest differences found between the groups were in the vertical axis: -2.45 (-2.77 /-1.89) m/s2 frail elderly versus -5.93 (-6.87 / -4.51) m/s2 non-frail elderly, p < 0.001. Finally, with regards to the turning subphase, the statistically significant differences found between the groups were greater in the data obtained from the gyroscope than from the accelerometer (the gyroscope data for the mean maximum peak value for Yaw movement angular velocity in the frail elderly was specifically 25.60°/s, compared to 112.8°/s for the non-frail elderly, p < 0.05). Conclusions The inertial sensor fitted in the iPhone4® is capable of studying and analyzing the kinematics of the different subphases of the Extended Timed Up and Go test in frail and non-frail elderly people. For the Extended Timed Up and Go test, this device allows more sensitive differentiation between population groups than the traditionally used variable, namely time.
Resumo:
We developed an analysis pipeline enabling population studies of HARDI data, and applied it to map genetic influences on fiber architecture in 90 twin subjects. We applied tensor-driven 3D fluid registration to HARDI, resampling the spherical fiber orientation distribution functions (ODFs) in appropriate Riemannian manifolds, after ODF regularization and sharpening. Fitting structural equation models (SEM) from quantitative genetics, we evaluated genetic influences on the Jensen-Shannon divergence (JSD), a novel measure of fiber spatial coherence, and on the generalized fiber anisotropy (GFA) a measure of fiber integrity. With random-effects regression, we mapped regions where diffusion profiles were highly correlated with subjects' intelligence quotient (IQ). Fiber complexity was predominantly under genetic control, and higher in more highly anisotropic regions; the proportion of genetic versus environmental control varied spatially. Our methods show promise for discovering genes affecting fiber connectivity in the brain.
Resumo:
We report the first 3D maps of genetic effects on brain fiber complexity. We analyzed HARDI brain imaging data from 90 young adult twins using an information-theoretic measure, the Jensen-Shannon divergence (JSD), to gauge the regional complexity of the white matter fiber orientation distribution functions (ODF). HARDI data were fluidly registered using Karcher means and ODF square-roots for interpol ation; each subject's JSD map was computed from the spatial coherence of the ODFs in each voxel's neighborhood. We evaluated the genetic influences on generalized fiber anisotropy (GFA) and complexity (JSD) using structural equation models (SEM). At each voxel, genetic and environmental components of data variation were estimated, and their goodness of fit tested by permutation. Color-coded maps revealed that the optimal models varied for different brain regions. Fiber complexity was predominantly under genetic control, and was higher in more highly anisotropic regions. These methods show promise for discovering factors affecting fiber connectivity in the brain.
Resumo:
The insula, hidden deep within the Sylvian fissures, has proven difficult to study from a connectivity perspective. Most of our current information on the anatomical connectivity of the insula comes from studies of nonhuman primates and post mortem human dissections. To date, only two neuroimaging studies have successfully examined the connectivity of the insula. Here we examine how the connectivity of the insula develops between ages 12 and 30, in 307 young adolescent and adult subjects scanned with 4-Tesla high angular resolution diffusion imaging (HARDI). The density of fiber connections between the insula and the frontal and parietal cortex decreased with age, but the connection density between the insula and the temporal cortex generally increased with age. This trajectory is in line with well-known patterns of cortical development in these regions. In addition, males and females showed different developmental trajectories for the connection between the left insula and the left precentral gyrus. The insula plays many different roles, some of them affected in neuropsychiatric disorders; this information on the insula's connectivity may help efforts to elucidate mechanisms of brain disorders in which it is implicated.
Resumo:
Cortical connectivity is associated with cognitive and behavioral traits that are thought to vary between sexes. Using high-angular resolution diffusion imaging at 4 Tesla, we scanned 234 young adult twins and siblings (mean age: 23.4 2.0 SD years) with 94 diffusion-encoding directions. We applied a novel Hough transform method to extract fiber tracts throughout the entire brain, based on fields of constant solid angle orientation distribution functions (ODFs). Cortical surfaces were generated from each subject's 3D T1-weighted structural MRI scan, and tracts were aligned to the anatomy. Network analysis revealed the proportions of fibers interconnecting 5 key subregions of the frontal cortex, including connections between hemispheres. We found significant sex differences (147 women/87 men) in the proportions of fibers connecting contralateral superior frontal cortices. Interhemispheric connectivity was greater in women, in line with long-standing theories of hemispheric specialization. These findings may be relevant for ongoing studies of the human connectome.
Resumo:
There is a major effort in medical imaging to develop algorithms to extract information from DTI and HARDI, which provide detailed information on brain integrity and connectivity. As the images have recently advanced to provide extraordinarily high angular resolution and spatial detail, including an entire manifold of information at each point in the 3D images, there has been no readily available means to view the results. This impedes developments in HARDI research, which need some method to check the plausibility and validity of image processing operations on HARDI data or to appreciate data features or invariants that might serve as a basis for new directions in image segmentation, registration, and statistics. We present a set of tools to provide interactive display of HARDI data, including both a local rendering application and an off-screen renderer that works with a web-based viewer. Visualizations are presented after registration and averaging of HARDI data from 90 human subjects, revealing important details for which there would be no direct way to appreciate using conventional display of scalar images.