968 resultados para Analytic function theory,
Resumo:
By modifying a domain first suggested by Ruth Goodman in 1935 and by exploiting the explicit solution by Fedorov of the Polyá-Chebotarev problem in the case of four symmetrically placed points, an improved upper bound for the univalent Bloch-Landau constant is obtained. The domain that leads to this improved bound takes the form of a disk from which some arcs are removed in such a way that the resulting simply connected domain is harmonically symmetric in each arc with respect to the origin. The existence of domains of this type is established, using techniques from conformal welding, and some general properties of harmonically symmetric arcs in this setting are established.
Resumo:
Modifiering av metallytor med starkt adsorberade kirala organiska molekyler är eventuellt den mest relevanta teknik man vet i dag för att skapa kirala ytor. Den kan utnyttjas i katalytisk produktion av enantiomeriskt rena kirala föreningar som behövs t.ex. som läkemedel och aromkemikalier. Trots många fördelar av asymmetrisk heterogen katalys jämfört med andra sätt för att få kirala föreningar, har den ändå inte blivit ett allmänt verktyg för storskaliga tillämpningar. Detta beror t.ex. på brist på djupare kunskaper i katalytiska reaktionsmekanismer och ursprunget för asymmetrisk induktion. I denna studie användes molekylmodelleringstekniker för att studera asymmetriska, heterogena katalytiska system, speciellt hydrering av prokirala karbonylföreningar till motsvarande kirala alkoholer på cinchona-alkaloidmodifierade Pt-katalysatorer. 1-Fenyl-1,2-propandion (PPD) och några andra föreningar, som innehåller en prokiral C=O-grupp, användes som reaktanter. Konformationer av reaktanter och cinchona-alkaloider (som kallas modifierare) samt vätebundna 1:1-komplex mellan dem studerades i gas- och lösningsfas med metoder som baserar sig på vågfunktionsteori och täthetsfunktionalteori (DFT). För beräkningen av protonaffiniteter användes också högst noggranna kombinationsmetoder såsom G2(MP2). Den relativa populationen av modifierarnas konformationer varierade som funktion av modifieraren, dess protonering och lösningsmedlet. Flera reaktant–modifierareinteraktionsgeometrier beaktades. Slutsatserna på riktning av stereoselektivitet baserade sig på den relativa termodynamiska stabiliteten av de diastereomeriska reaktant–modifierare-komplexen samt energierna hos π- och π*-orbitalerna i den reaktiva karbonylgruppen. Adsorption och reaktioner på Pt(111)-ytan betraktades med DFT. Regioselektivitet i hydreringen av PPD och 2,3-hexandion kunde förklaras med molekyl–yta-interaktioner. Storleken och formen av klustret använt för att beskriva Pt-ytan inverkade inte bara på adsorptionsenergierna utan också på de relativa stabiliteterna av olika adsorptionsstrukturer av en molekyl. Populationerna av modifierarnas konformationer i gas- och lösningsfas korrelerade inte med populationerna på Pt-ytan eller med enantioselektiviteten i hydreringen av PPD på Pt–cinchona-katalysatorer. Vissa modifierares konformationer och reaktant–modifierare-interaktionsgeometrier var stabila bara på metallytan. Teoretiskt beräknade potentialenergiprofiler för hydrering av kirala α-hydroxiketoner på Pt implicerade preferens för parvis additionsmekanism för väte och selektiviteter i harmoni med experimenten. De uppnådda resultaten ökar uppfattningen om kirala heterogena katalytiska system och kunde därför utnyttjas i utvecklingen av nya, mera aktiva och selektiva kirala katalysatorer.
Resumo:
This PhD thesis in Mathematics belongs to the field of Geometric Function Theory. The thesis consists of four original papers. The topic studied deals with quasiconformal mappings and their distortion theory in Euclidean n-dimensional spaces. This theory has its roots in the pioneering papers of F. W. Gehring and J. Väisälä published in the early 1960’s and it has been studied by many mathematicians thereafter. In the first paper we refine the known bounds for the so-called Mori constant and also estimate the distortion in the hyperbolic metric. The second paper deals with radial functions which are simple examples of quasiconformal mappings. These radial functions lead us to the study of the so-called p-angular distance which has been studied recently e.g. by L. Maligranda and S. Dragomir. In the third paper we study a class of functions of a real variable studied by P. Lindqvist in an influential paper. This leads one to study parametrized analogues of classical trigonometric and hyperbolic functions which for the parameter value p = 2 coincide with the classical functions. Gaussian hypergeometric functions have an important role in the study of these special functions. Several new inequalities and identities involving p-analogues of these functions are also given. In the fourth paper we study the generalized complete elliptic integrals, modular functions and some related functions. We find the upper and lower bounds of these functions, and those bounds are given in a simple form. This theory has a long history which goes back two centuries and includes names such as A. M. Legendre, C. Jacobi, C. F. Gauss. Modular functions also occur in the study of quasiconformal mappings. Conformal invariants, such as the modulus of a curve family, are often applied in quasiconformal mapping theory. The invariants can be sometimes expressed in terms of special conformal mappings. This fact explains why special functions often occur in this theory.
Resumo:
This Ph.D. thesis consists of four original papers. The papers cover several topics from geometric function theory, more specifically, hyperbolic type metrics, conformal invariants, and the distortion properties of quasiconformal mappings. The first paper deals mostly with the quasihyperbolic metric. The main result gives the optimal bilipschitz constant with respect to the quasihyperbolic metric for the M¨obius self-mappings of the unit ball. A quasiinvariance property, sharp in a local sense, of the quasihyperbolic metric under quasiconformal mappings is also proved. The second paper studies some distortion estimates for the class of quasiconformal self-mappings fixing the boundary values of the unit ball or convex domains. The distortion is measured by the hyperbolic metric or hyperbolic type metrics. The results provide explicit, asymptotically sharp inequalities when the maximal dilatation of quasiconformal mappings tends to 1. These explicit estimates involve special functions which have a crucial role in this study. In the third paper, we investigate the notion of the quasihyperbolic volume and find the growth estimates for the quasihyperbolic volume of balls in a domain in terms of the radius. It turns out that in the case of domains with Ahlfors regular boundaries, the rate of growth depends not merely on the radius but also on the metric structure of the boundary. The topic of the fourth paper is complete elliptic integrals and inequalities. We derive some functional inequalities and elementary estimates for these special functions. As applications, some functional inequalities and the growth of the exterior modulus of a rectangle are studied.
Resumo:
Le sujet principal de cette thèse est la distribution des nombres premiers dans les progressions arithmétiques, c'est-à-dire des nombres premiers de la forme $qn+a$, avec $a$ et $q$ des entiers fixés et $n=1,2,3,\dots$ La thèse porte aussi sur la comparaison de différentes suites arithmétiques par rapport à leur comportement dans les progressions arithmétiques. Elle est divisée en quatre chapitres et contient trois articles.
Le premier chapitre est une invitation à la théorie analytique des nombres, suivie d'une revue des outils qui seront utilisés plus tard. Cette introduction comporte aussi certains résultats de recherche, que nous avons cru bon d'inclure au fil du texte.
Le deuxième chapitre contient l'article \emph{Inequities in the Shanks-Rényi prime number
race: an asymptotic formula for the densities}, qui est le fruit de recherche conjointe avec le professeur Greg Martin. Le but de cet article est d'étudier un phénomène appelé le <
Resumo:
Réalisé en cotutelle avec l'Université Paris-Diderot.
Resumo:
Details are given of a boundary-fitted mesh generation method for use in modelling free surface flow and water quality. A numerical method has been developed for generating conformal meshes for curvilinear polygonal and multiply-connected regions. The method is based on the Cauchy-Riemann conditions for the analytic function and is able to map a curvilinear polygonal region directly onto a regular polygonal region, with horizontal and vertical sides. A set of equations have been derived for determining the lengths of these sides and the least-squares method has been used in solving the equations. Several numerical examples are presented to illustrate the method.
Resumo:
In this paper, we study binary differential equations a(x, y)dy (2) + 2b(x, y) dx dy + c(x, y)dx (2) = 0, where a, b, and c are real analytic functions. Following the geometric approach of Bruce and Tari in their work on multiplicity of implicit differential equations, we introduce a definition of the index for this class of equations that coincides with the classical Hopf`s definition for positive binary differential equations. Our results also apply to implicit differential equations F(x, y, p) = 0, where F is an analytic function, p = dy/dx, F (p) = 0, and F (pp) not equal aEuro parts per thousand 0 at the singular point. For these equations, we relate the index of the equation at the singular point with the index of the gradient of F and index of the 1-form omega = dy -aEuro parts per thousand pdx defined on the singular surface F = 0.
Resumo:
A time efficient optical model is proposed for GATE simulation of a LYSO scintillation matrix coupled to a photomultiplier. The purpose is to avoid the excessively long computation time when activating the optical processes in GATE. The usefulness of the model is demonstrated by comparing the simulated and experimental energy spectra obtained with the dual planar head equipment for dosimetry with a positron emission tomograph ( DoPET). The procedure to apply the model is divided in two steps. Firstly, a simplified simulation of a single crystal element of DoPET is used to fit an analytic function that models the optical attenuation inside the crystal. In a second step, the model is employed to calculate the influence of this attenuation in the energy registered by the tomograph. The use of the proposed optical model is around three orders of magnitude faster than a GATE simulation with optical processes enabled. A good agreement was found between the experimental and simulated data using the optical model. The results indicate that optical interactions inside the crystal elements play an important role on the energy resolution and induce a considerable degradation of the spectra information acquired by DoPET. Finally, the same approach employed by the proposed optical model could be useful to simulate a scintillation matrix coupled to a photomultiplier using single or dual readout scheme.
Resumo:
In the present work, a new approach for the determination of the partition coefficient in different interfaces based on the density function theory is proposed. Our results for log P(ow) considering a n-octanol/water interface for a large super cell for acetone -0.30 (-0.24) and methane 0.95 (0.78) are comparable with the experimental data given in parenthesis. We believe that these differences are mainly related to the absence of van der Walls interactions and the limited number of molecules considered in the super cell. The numerical deviations are smaller than that observed for interpolation based tools. As the proposed model is parameter free, it is not limited to the n-octanol/water interface.
Resumo:
O regime eólico de uma região pode ser descrito por distribuição de frequências que fornecem informações e características extremamente necessárias para uma possível implantação de sistemas eólicos de captação de energia na região e consequentes aplicações no meio rural em regiões afastadas. Estas características, tais como a velocidade média anual, a variância das velocidades registradas e a densidade da potência eólica média horária, podem ser obtidas pela frequência de ocorrências de determinada velocidade, que por sua vez deve ser estudada através de expressões analíticas. A função analítica mais adequada para distribuições eólicas é a função de densidade de Weibull, que pode ser determinada por métodos numéricos e regressões lineares. O objetivo deste trabalho é caracterizar analítica e geometricamente todos os procedimentos metodológicos necessários para a realização de uma caracterização completa do regime eólico de uma região e suas aplicações na região de Botucatu - SP, visando a determinar o potencial energético para implementação de turbinas eólicas. Assim, foi possível estabelecer teoremas relacionados com a forma de caracterização do regime eólico, estabelecendo a metodologia concisa analiticamente para a definição dos parâmetros eólicos de qualquer região a ser estudada. Para o desenvolvimento desta pesquisa, utilizou-se um anemômetro da CAMPBELL.
Resumo:
We study the existence of homoclic solutions for reversible Hamiltonian systems taking the family of differential equations u(iv) + au - u +f(u, b) = 0 as a model, where fis an analytic function and a, b real parameters. These equations are important in several physical situations such as solitons and in the existence of finite energy stationary states of partial differential equations, but no assumptions of any kind of discrete symmetry is made and the analysis here developed can be extended to others Hamiltonian systems and successfully employed in situations where standard methods fail. We reduce the problem of computing these orbits to that of finding the intersection of the unstable manifold with a suitable set and then apply it to concrete situations. We also plot the homoclinic values configuration in parameters space, giving a picture of the structural distribution and a geometrical view of homoclinic bifurcations. (c) 2005 Published by Elsevier B.V.
Resumo:
Pós-graduação em Engenharia Elétrica - FEB
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We present a succinct review of the canonical formalism of classical mechanics, followed by a brief review of the main representations of quantum mechanics. We emphasize the formal similarities between the corresponding equations. We notice that these similarities contributed to the formulation of quantum mechanics. Of course, the driving force behind the search of any new physics is based on experimental evidence