759 resultados para Analytic Network Process (ANP)
Resumo:
Effective management of projects is becoming increasingly important for any type of organization to remain competitive in today’s dynamic business environment due to pressure of globalization. The use of benchmarking is widening as a technique for supporting project management. Benchmarking can be described as the search for the best practices, leading to the superior performance of an organization. However, effectiveness of benchmarking depends on the use of tools for collecting and analyzing information and deriving subsequent improvement projects. This study demonstrates how analytic hierarchy process (AHP), a multiple attribute decision-making technique, can be used for benchmarking project management practices. The entire methodology has been applied to benchmark project management practice of Caribbean public sector organizations with organizations in the Indian petroleum sector, organizations in the infrastructure sector of Thailand and the UK. This study demonstrates the effectiveness of a proposed benchmarking model using AHP, determines problems and issues of Caribbean project management in the public sector and suggests improvement measures for effective project management.
Resumo:
Time, cost and quality achievements on large-scale construction projects are uncertain because of technological constraints, involvement of many stakeholders, long durations, large capital requirements and improper scope definitions. Projects that are exposed to such an uncertain environment can effectively be managed with the application of risk management throughout the project life cycle. Risk is by nature subjective. However, managing risk subjectively poses the danger of non-achievement of project goals. Moreover, risk analysis of the overall project also poses the danger of developing inappropriate responses. This article demonstrates a quantitative approach to construction risk management through an analytic hierarchy process (AHP) and decision tree analysis. The entire project is classified to form a few work packages. With the involvement of project stakeholders, risky work packages are identified. As all the risk factors are identified, their effects are quantified by determining probability (using AHP) and severity (guess estimate). Various alternative responses are generated, listing the cost implications of mitigating the quantified risks. The expected monetary values are derived for each alternative in a decision tree framework and subsequent probability analysis helps to make the right decision in managing risks. In this article, the entire methodology is explained by using a case application of a cross-country petroleum pipeline project in India. The case study demonstrates the project management effectiveness of using AHP and DTA.
Resumo:
Selection of a power market structure from the available alternatives is an important activity within an overall power sector reform programme. The evaluation criteria for selection are both subjective as well as objective in nature and the selection of alternatives is characterised by their conflicting nature. This study demonstrates a methodology for power market structure selection using the analytic hierarchy process (AHP), a multiple attribute decision-making technique, to model the selection methodology with the active participation of relevant stakeholders in a workshop environment. The methodology is applied to a hypothetical case of a State Electricity Board reform in India.
Resumo:
Purpose: To develop a model for the global performance measurement of intensive care units (ICUs) and to apply that model to compare the services for quality improvement. Materials and Methods: Analytic hierarchy process, a multiple-attribute decision-making technique, is used in this study to evolve such a model. The steps consisted of identifying the critical success factors for the best performance of an ICU, identifying subfactors that influence the critical factors, comparing them pairwise, deriving their relative importance and ratings, and calculating the cumulative performance according to the attributes of a given ICU. Every step in the model was derived by group discussions, brainstorming, and consensus among intensivists. Results: The model was applied to 3 ICUs, 1 each in Barbados, Trinidad, and India in tertiary care teaching hospitals of similar setting. The cumulative performance rating of the Barbados ICU was 1.17 when compared with that of Trinidad and Indian ICU, which were 0.82 and 0.75, respectively, showing that the Trinidad and Indian ICUs performed 70% and 64% with respect to Barbados ICU. The model also enabled identifying specific areas where the ICUs did not perform well, which helped to improvise those areas. Conclusions: Analytic hierarchy process is a very useful model to measure the global performance of an ICU. © 2005 Elsevier Inc. All rights reserved.
Resumo:
Due to its wide applicability and ease of use, the analytic hierarchy process (AHP) has been studied extensively for the last 20 years. Recently, it is observed that the focus has been confined to the applications of the integrated AHPs rather than the stand-alone AHP. The five tools that commonly combined with the AHP include mathematical programming, quality function deployment (QFD), meta-heuristics, SWOT analysis, and data envelopment analysis (DEA). This paper reviews the literature of the applications of the integrated AHPs. Related articles appearing in the international journals from 1997 to 2006 are gathered and analyzed so that the following three questions can be answered: (i) which type of the integrated AHPs was paid most attention to? (ii) which area the integrated AHPs were prevalently applied to? (iii) is there any inadequacy of the approaches? Based on the inadequacy, if any, some improvements and possible future work are recommended. This research not only provides evidence that the integrated AHPs are better than the stand-alone AHP, but also aids the researchers and decision makers in applying the integrated AHPs effectively.
Resumo:
Purpose - The purpose of this study is to develop a performance measurement model for service operations using the analytic hierarchy process approach. Design/methodology/approach - The study reviews current relevant literature on performance measurement and develops a model for performance measurement. The model is then applied to the intensive care units (ICUs) of three different hospitals in developing nations. Six focus group discussions were undertaken, involving experts from the specific area under investigation, in order to develop an understandable performance measurement model that was both quantitative and hierarchical. Findings - A combination of outcome, structure and process-based factors were used as a foundation for the model. The analyses of the links between them were used to reveal the relative importance of each and their associated sub factors. It was considered to be an effective quantitative tool by the stakeholders. Research limitations/implications - This research only applies the model to ICUs in healthcare services. Practical implications - Performance measurement is an important area within the operations management field. Although numerous models are routinely being deployed both in practice and research, there is always room for improvement. The present study proposes a hierarchical quantitative approach, which considers both subjective and objective performance criteria. Originality/value - This paper develops a hierarchical quantitative model for service performance measurement. It considers success factors with respect to outcomes, structure and processes with the involvement of the concerned stakeholders based upon the analytic hierarchy process approach. The unique model is applied to the ICUs of hospitals in order to demonstrate its effectiveness. The unique application provides a comparative international study of service performance measurement in ICUs of hospitals in three different countries. © Emerald Group Publishing Limited.
Resumo:
In this paper a Hierarchical Analytical Network Process (HANP) model is demonstrated for evaluating alternative technologies for generating electricity from MSW in India. The technological alternatives and evaluation criteria for the HANP study are characterised by reviewing the literature and consulting experts in the field of waste management. Technologies reviewed in the context of India include landfill, anaerobic digestion, incineration, pelletisation and gasification. To investigate the sensitivity of the result, we examine variations in expert opinions and carry out an Analytical Hierarchy Process (AHP) analysis for comparison. We find that anaerobic digestion is the preferred technology for generating electricity from MSW in India. Gasification is indicated as the preferred technology in an AHP model due to the exclusion of criteria dependencies and in an HANP analysis when placing a high priority on net output and retention time. We conclude that HANP successfully provides a structured framework for recommending which technologies to pursue in India, and the adoption of such tools is critical at a time when key investments in infrastructure are being made. Therefore the presented methodology is thought to have a wider potential for investors, policy makers, researchers and plant developers in India and elsewhere. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
The main purpose of this research is to develop and deploy an analytical framework for measuring the environmental performance of manufacturing supply chains. This work's theoretical bases combine and reconcile three major areas: supply chain management, environmental management and performance measurement. Researchers have suggested many empirical criteria for green supply chain (GSC) performance measurement and proposed both qualitative and quantitative frameworks. However, these are mainly operational in nature and specific to the focal company. This research develops an innovative GSC performance measurement framework by integrating supply chain processes (supplier relationship management, internal supply chain management and customer relationship management) with organisational decision levels (both strategic and operational). Environmental planning, environmental auditing, management commitment, environmental performance, economic performance and operational performance are the key level constructs. The proposed framework is then applied to three selected manufacturing organisations in the UK. Their GSC performance is measured and benchmarked by using the analytic hierarchy process (AHP), a multiple-attribute decision-making technique. The AHP-based framework offers an effective way to measure and benchmark organisations’ GSC performance. This study has both theoretical and practical implications. Theoretically it contributes holistic constructs for designing a GSC and managing it for sustainability; and practically it helps industry practitioners to measure and improve the environmental performance of their supply chain. © 2013 Copyright Taylor and Francis Group, LLC. CORRIGENDUM DOI 10.1080/09537287.2012.751186 In the article ‘Green supply chain performance measurement using the analytic hierarchy process: a comparative analysis of manufacturing organisations’ by Prasanta Kumar Dey and Walid Cheffi, Production Planning & Control, 10.1080/09537287.2012.666859, a third author is added which was not included in the paper as it originally appeared. The third author is Breno Nunes.
Resumo:
The main purpose of the study is to develop an integrated framework for managing project risks by analyzing risk across project, work package and activity levels, and developing responses. Design/methodology/approach: The study first reviews the literature of various contemporary risk management frameworks in order to identify gaps in project risk management knowledge. Then it develops a conceptual risk management framework using combined analytic hierarchy process (AHP) and risk map for managing project risks. The proposed framework has then been applied to a 1500 km oil pipeline construction project in India in order to demonstrate its effectiveness. The concerned project stakeholders were involved through focus group discussions for applying the proposed risk management framework in the project under study. Findings: The combined AHP and risk map approach is very effective to manage project risks across project, work package and activity levels. The risk factors in project level are caused because of external forces such as business environment (e.g. customers, competitors, technological development, politics, socioeconomic environment). The risk factors in work package and activity levels are operational in nature and created due to internal causes such as lack of material and labor productivity, implementation issues, team ineffectiveness, etc. Practical implications: The suggested model can be applied to any complex project and helps manage risk throughout the project life cycle. Originality/value: Both business and operational risks constitute project risks. In one hand, the conventional project risk management frameworks emphasize on managing business risks and often ignore operational risks. On the other hand, the studies that deal with operational risk often do not link them with business risks. However, they need to be addressed in an integrated way as there are a few risks that affect only the specific level. Hence, this study bridges the gaps. © 2010 Elsevier B.V. All rights reserved.
Resumo:
The existing method of pipeline health monitoring, which requires an entire pipeline to be inspected periodically, is both time-wasting and expensive. A risk-based model that reduces the amount of time spent on inspection has been presented. This model not only reduces the cost of maintaining petroleum pipelines, but also suggests an efficient design and operation philosophy, construction methodology, and logical insurance plans. The risk-based model uses the analytic hierarchy process (AHP), a multiple-attribute decision-making technique, to identify the factors that influence failure on specific segments and to analyze their effects by determining probability of risk factors. The severity of failure is determined through consequence analysis. From this, the effect of a failure caused by each risk factor can be established in terms of cost, and the cumulative effect of failure is determined through probability analysis. The technique does not totally eliminate subjectivity, but it is an improvement over the existing inspection method.