995 resultados para Analyse de variance
Resumo:
This thesis addresses computational challenges arising from Bayesian analysis of complex real-world problems. Many of the models and algorithms designed for such analysis are ‘hybrid’ in nature, in that they are a composition of components for which their individual properties may be easily described but the performance of the model or algorithm as a whole is less well understood. The aim of this research project is to after a better understanding of the performance of hybrid models and algorithms. The goal of this thesis is to analyse the computational aspects of hybrid models and hybrid algorithms in the Bayesian context. The first objective of the research focuses on computational aspects of hybrid models, notably a continuous finite mixture of t-distributions. In the mixture model, an inference of interest is the number of components, as this may relate to both the quality of model fit to data and the computational workload. The analysis of t-mixtures using Markov chain Monte Carlo (MCMC) is described and the model is compared to the Normal case based on the goodness of fit. Through simulation studies, it is demonstrated that the t-mixture model can be more flexible and more parsimonious in terms of number of components, particularly for skewed and heavytailed data. The study also reveals important computational issues associated with the use of t-mixtures, which have not been adequately considered in the literature. The second objective of the research focuses on computational aspects of hybrid algorithms for Bayesian analysis. Two approaches will be considered: a formal comparison of the performance of a range of hybrid algorithms and a theoretical investigation of the performance of one of these algorithms in high dimensions. For the first approach, the delayed rejection algorithm, the pinball sampler, the Metropolis adjusted Langevin algorithm, and the hybrid version of the population Monte Carlo (PMC) algorithm are selected as a set of examples of hybrid algorithms. Statistical literature shows how statistical efficiency is often the only criteria for an efficient algorithm. In this thesis the algorithms are also considered and compared from a more practical perspective. This extends to the study of how individual algorithms contribute to the overall efficiency of hybrid algorithms, and highlights weaknesses that may be introduced by the combination process of these components in a single algorithm. The second approach to considering computational aspects of hybrid algorithms involves an investigation of the performance of the PMC in high dimensions. It is well known that as a model becomes more complex, computation may become increasingly difficult in real time. In particular the importance sampling based algorithms, including the PMC, are known to be unstable in high dimensions. This thesis examines the PMC algorithm in a simplified setting, a single step of the general sampling, and explores a fundamental problem that occurs in applying importance sampling to a high-dimensional problem. The precision of the computed estimate from the simplified setting is measured by the asymptotic variance of the estimate under conditions on the importance function. Additionally, the exponential growth of the asymptotic variance with the dimension is demonstrated and we illustrates that the optimal covariance matrix for the importance function can be estimated in a special case.
Resumo:
Prostate cancer metastasis is reliant on the reciprocal interactions between cancer cells and the bone niche/micro-environment. The production of suitable matrices to study metastasis, carcinogenesis and in particular prostate cancer/bone micro-environment interaction has been limited to specific protein matrices or matrix secreted by immortalised cell lines that may have undergone transformation processes altering signaling pathways and modifying gene or receptor expression. We hypothesize that matrices produced by primary human osteoblasts are a suitable means to develop an in vitro model system for bone metastasis research mimicking in vivo conditions. We have used a decellularized matrix secreted from primary human osteoblasts as a model for prostate cancer function in the bone micro-environment. We show that this collagen I rich matrix is of fibrillar appearance, highly mineralized, and contains proteins, such as osteocalcin, osteonectin and osteopontin, and growth factors characteristic of bone extracellular matrix (ECM). LNCaP and PC3 cells grown on this matrix, adhere strongly, proliferate, and express markers consistent with a loss of epithelial phenotype. Moreover, growth of these cells on the matrix is accompanied by the induction of genes associated with attachment, migration, increased invasive potential, Ca2+ signaling and osteolysis. In summary, we show that growth of prostate cancer cells on matrices produced by primary human osteoblasts mimics key features of prostate cancer bone metastases and thus is a suitable model system to study the tumor/bone micro-environment interaction in this disease.
Resumo:
Analytical expressions are derived for the mean and variance, of estimates of the bispectrum of a real-time series assuming a cosinusoidal model. The effects of spectral leakage, inherent in discrete Fourier transform operation when the modes present in the signal have a nonintegral number of wavelengths in the record, are included in the analysis. A single phase-coupled triad of modes can cause the bispectrum to have a nonzero mean value over the entire region of computation owing to leakage. The variance of bispectral estimates in the presence of leakage has contributions from individual modes and from triads of phase-coupled modes. Time-domain windowing reduces the leakage. The theoretical expressions for the mean and variance of bispectral estimates are derived in terms of a function dependent on an arbitrary symmetric time-domain window applied to the record. the number of data, and the statistics of the phase coupling among triads of modes. The theoretical results are verified by numerical simulations for simple test cases and applied to laboratory data to examine phase coupling in a hypothesis testing framework
Resumo:
Twin studies offer the opportunity to determine the relative contribution of genes versus environment in traits of interest. Here, we investigate the extent to which variance in brain structure is reduced in monozygous twins with identical genetic make-up. We investigate whether using twins as compared to a control population reduces variability in a number of common magnetic resonance (MR) structural measures, and we investigate the location of areas under major genetic influences. This is fundamental to understanding the benefit of using twins in studies where structure is the phenotype of interest. Twenty-three pairs of healthy MZ twins were compared to matched control pairs. Volume, T2 and diffusion MR imaging were performed as well as spectroscopy (MRS). Images were compared using (i) global measures of standard deviation and effect size, (ii) voxel-based analysis of similarity and (iii) intra-pair correlation. Global measures indicated a consistent increase in structural similarity in twins. The voxel-based and correlation analyses indicated a widespread pattern of increased similarity in twin pairs, particularly in frontal and temporal regions. The areas of increased similarity were most widespread for the diffusion trace and least widespread for T2. MRS showed consistent reduction in metabolite variation that was significant in the temporal lobe N-acetylaspartate (NAA). This study has shown the distribution and magnitude of reduced variability in brain volume, diffusion, T2 and metabolites in twins. The data suggest that evaluation of twins discordant for disease is indeed a valid way to attribute genetic or environmental influences to observed abnormalities in patients since evidence is provided for the underlying assumption of decreased variability in twins.
Resumo:
Concerns regarding groundwater contamination with nitrate and the long-term sustainability of groundwater resources have prompted the development of a multi-layered three dimensional (3D) geological model to characterise the aquifer geometry of the Wairau Plain, Marlborough District, New Zealand. The 3D geological model which consists of eight litho-stratigraphic units has been subsequently used to synthesise hydrogeological and hydrogeochemical data for different aquifers in an approach that aims to demonstrate how integration of water chemistry data within the physical framework of a 3D geological model can help to better understand and conceptualise groundwater systems in complex geological settings. Multivariate statistical techniques(e.g. Principal Component Analysis and Hierarchical Cluster Analysis) were applied to groundwater chemistry data to identify hydrochemical facies which are characteristic of distinct evolutionary pathways and a common hydrologic history of groundwaters. Principal Component Analysis on hydrochemical data demonstrated that natural water-rock interactions, redox potential and human agricultural impact are the key controls of groundwater quality in the Wairau Plain. Hierarchical Cluster Analysis revealed distinct hydrochemical water quality groups in the Wairau Plain groundwater system. Visualisation of the results of the multivariate statistical analyses and distribution of groundwater nitrate concentrations in the context of aquifer lithology highlighted the link between groundwater chemistry and the lithology of host aquifers. The methodology followed in this study can be applied in a variety of hydrogeological settings to synthesise geological, hydrogeological and hydrochemical data and present them in a format readily understood by a wide range of stakeholders. This enables a more efficient communication of the results of scientific studies to the wider community.
Resumo:
Purpose: The purpose of this study was to improve the retention of primary healthcare (PHC) nurses through exploring and assessing their quality of work life (QWL) and turnover intention. Design and methods: A cross-sectional survey design was used in this study. Data were collected using a questionnaire comprising four sections (Brooks’ survey of Quality of Nursing Work Life [QNWL], Anticipated Turnover Intention, open-ended questions and demographic characteristics). A convenience sample was recruited from 143 PHC centres in Jazan, Saudi Arabia. A response rate of 87% (n = 508/585) was achieved. The SPSS v17 for Windows and NVivo 8 were used for analysis purposes. Procedures and tests used in this study to analyse the quantitative data were descriptive statistics, t-test, ANOVA, General Linear Model (GLM) univariate analysis, standard multiple regression, and hierarchical multiple regression. Qualitative data obtained from responses to the open-ended questions were analysed using the NVivo 8. Findings: Quantitative findings suggested that PHC nurses were dissatisfied with their work life. Respondents’ scores ranged between 45 and 218 (mean = 139.45), which is lower than the average total score on Brooks’ Survey (147). Major influencing factors were classified under four dimensions. First, work life/home life factors: unsuitable working hours, lack of facilities for nurses, inability to balance work with family needs and inadequacy of vacations’ policy. Second, work design factors: high workload, insufficient workforce numbers, lack of autonomy and undertaking many non-nursing tasks. Third, work context factors: management practices, lack of development opportunities, and inappropriate working environment in terms of the level of security, patient care supplies and unavailability of recreation room. Finally, work world factors: negative public image of nursing, and inadequate payment. More positively, nurses were notably satisfied with their co-workers. Conversely, 40.4% (n = 205) of the respondents indicated that they intended to leave their current employment. The relationships between QWL and demographic variables of gender, age, marital status, dependent children, dependent adults, nationality, ethnicity, nursing tenure, organisational tenure, positional tenure, and payment per month were significant (p < .05). The eta squared test for these demographics indicates a small to medium effect size of the variation in QWL scores. Using the GLM univariate analysis, education level was also significantly related to the QWL (p < .05). The relationships between turnover intention and demographic variables including gender, age, marital status, dependent children, education level, nursing tenure, organisational tenure, positional tenure, and payment per month were significant (p < .05). The eta squared test for these demographics indicates a small to moderate effect size of the variation in the turnover intention scores. Using the GLM univariate analysis, the dependent adults’ variable was also significantly related to turnover intention (p < .05). Turnover intention was significantly related to QWL. Using standard multiple regression, 26% of the variance in turnover intention was explained by the QWL F (4,491), 43.71, p < .001, with R² = .263. Further analysis using hierarchical multiple regression found that the total variance explained by the model as a whole (demographics and QWL) was 32.1%, F (17.433) = 12.04, p < .001. QWL explained an additional 19% of the variance in turnover intention, after controlling for demographic variables, R squared change =.19, F change (4, 433) = 30.190, p < .001. The work context variable makes the strongest unique contribution (-.387) to explain the turnover intention, followed by the work design dimension (-.112). The qualitative findings reaffirmed the quantitative findings in terms of QWL and turnover intention. However, the home life/work life and work world dimensions were of great important to both QWL and turnover intention. The qualitative findings revealed a number of new factors that were not included in the survey questionnaire. These included being away from family, lack of family support, social and cultural aspects, accommodation facilities, transportation, building and infrastructure of PHC, nature of work, job instability, privacy at work, patients and community, and distance between home and workplace. Conclusion: Creating and maintaining a healthy work life for PHC nurses is very important to improve their work satisfaction, reduce turnover, enhance productivity and improve nursing care outcomes. Improving these factors could lead to a higher QWL and increase retention rates and therefore reinforcing the stabilisation of the nursing workforce. Significance of the research: Many countries are examining strategies to attract and retain the health care workforce, particularly nurses. This study identified factors that influence the QWL of PHC nurses as well as their turnover intention. It also determined the significant relationship between QWL and turnover intention. In addition, the present study tested Brooks’ survey of QNWL on PHC nurses for the first time. The qualitative findings of this study revealed a number of new variables regarding QWL and turnover intention of PHC nurses. These variables could be used to improve current survey instruments or to develop new research surveys. The study findings could be also used to develop and appropriately implement plans to improve QWL. This may help to enhance the home and work environments of PHC nurses, improve individual and organisational performance, and increase nurses’ commitment. This study contributes to the existing body of research knowledge by presenting new data and findings from a different country and healthcare system. It is the first of its kind in Saudi Arabia, especially in the field of PHC. It has examined the relationship between QWL and turnover intention of PHC nurses for the first time using nursing instruments. The study also offers a fresh explanation (new framework) of the relationship between QWL and turnover intention among PHC nurses, which could be used or tested by researchers in other settings. Implications for further research: Review of the extant literature reveals little in-depth research on the PHC workforce, especially in terms of QWL and organisational turnover in developing countries. Further research is required to develop a QWL tool for PHC nurses, taking into consideration the findings of the current study along with the local culture. Moreover, the revised theoretical framework of the current study could be tested in further research in other regions, countries or healthcare systems in order to identify its ability to predict the level of PHC nurses’ QWL and their intention to leave. There is a need to conduct longitudinal research on PHC organisations to gain an in-depth understanding of the determents of and changes in QWL and turnover intention of PHC nurses at various points of time. An intervention study is required to improve QWL and retention among PHC nurses using the findings of the current study. This would help to assess the impact of such strategies on reducing turnover of PHC nurses. Focusing on the location of the current study, it would be valuable to conduct another study in five years’ time to examine the percentage of actual turnover among PHC nurses compared with the reported turnover intention in the current study. Further in-depth research would also be useful to assess the impact of the local culture on the perception of expatriate nurses towards their QWL and their turnover intention. A comparative study is required between PHC centres and hospitals as well as the public and private health sector agencies in terms of QWL and turnover intention of nursing personnel. Findings may differ from sector to sector according to variations in health systems, working environments and the case mix of patients.
Resumo:
Reliable ambiguity resolution (AR) is essential to Real-Time Kinematic (RTK) positioning and its applications, since incorrect ambiguity fixing can lead to largely biased positioning solutions. A partial ambiguity fixing technique is developed to improve the reliability of AR, involving partial ambiguity decorrelation (PAD) and partial ambiguity resolution (PAR). Decorrelation transformation could substantially amplify the biases in the phase measurements. The purpose of PAD is to find the optimum trade-off between decorrelation and worst-case bias amplification. The concept of PAR refers to the case where only a subset of the ambiguities can be fixed correctly to their integers in the integer least-squares (ILS) estimation system at high success rates. As a result, RTK solutions can be derived from these integer-fixed phase measurements. This is meaningful provided that the number of reliably resolved phase measurements is sufficiently large for least-square estimation of RTK solutions as well. Considering the GPS constellation alone, partially fixed measurements are often insufficient for positioning. The AR reliability is usually characterised by the AR success rate. In this contribution an AR validation decision matrix is firstly introduced to understand the impact of success rate. Moreover the AR risk probability is included into a more complete evaluation of the AR reliability. We use 16 ambiguity variance-covariance matrices with different levels of success rate to analyse the relation between success rate and AR risk probability. Next, the paper examines during the PAD process, how a bias in one measurement is propagated and amplified onto many others, leading to more than one wrong integer and to affect the success probability. Furthermore, the paper proposes a partial ambiguity fixing procedure with a predefined success rate criterion and ratio-test in the ambiguity validation process. In this paper, the Galileo constellation data is tested with simulated observations. Numerical results from our experiment clearly demonstrate that only when the computed success rate is very high, the AR validation can provide decisions about the correctness of AR which are close to real world, with both low AR risk and false alarm probabilities. The results also indicate that the PAR procedure can automatically chose adequate number of ambiguities to fix at given high-success rate from the multiple constellations instead of fixing all the ambiguities. This is a benefit that multiple GNSS constellations can offer.
Resumo:
Background Cancer outlier profile analysis (COPA) has proven to be an effective approach to analyzing cancer expression data, leading to the discovery of the TMPRSS2 and ETS family gene fusion events in prostate cancer. However, the original COPA algorithm did not identify down-regulated outliers, and the currently available R package implementing the method is similarly restricted to the analysis of over-expressed outliers. Here we present a modified outlier detection method, mCOPA, which contains refinements to the outlier-detection algorithm, identifies both over- and under-expressed outliers, is freely available, and can be applied to any expression dataset. Results We compare our method to other feature-selection approaches, and demonstrate that mCOPA frequently selects more-informative features than do differential expression or variance-based feature selection approaches, and is able to recover observed clinical subtypes more consistently. We demonstrate the application of mCOPA to prostate cancer expression data, and explore the use of outliers in clustering, pathway analysis, and the identification of tumour suppressors. We analyse the under-expressed outliers to identify known and novel prostate cancer tumour suppressor genes, validating these against data in Oncomine and the Cancer Gene Index. We also demonstrate how a combination of outlier analysis and pathway analysis can identify molecular mechanisms disrupted in individual tumours. Conclusions We demonstrate that mCOPA offers advantages, compared to differential expression or variance, in selecting outlier features, and that the features so selected are better able to assign samples to clinically annotated subtypes. Further, we show that the biology explored by outlier analysis differs from that uncovered in differential expression or variance analysis. mCOPA is an important new tool for the exploration of cancer datasets and the discovery of new cancer subtypes, and can be combined with pathway and functional analysis approaches to discover mechanisms underpinning heterogeneity in cancers