907 resultados para Amyloid beta-Peptides


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amyloid P-peptide (A beta) likely causes functional alterations in neurons well prior to their death. Nuclear factor-kappa B (NF-kappa B), a transcription factor that is known to play important roles in cell survival and apoptosis, has been shown to be modulated by A beta in neurons and glia, but the mechanism is unknown. Because A beta has also been shown to enhance activation of N-methyl-D-aspartate (NMDA) receptors, we investigated the role of NMDA receptor-mediated intracellular signaling pathways in A beta-induced NF-kappa B activation in primary cultured rat cerebellar cells. Cells were treated with different concentrations of A beta 1-40 (1 or 2 mu M) for different periods (6, 12, or 24 hr). MK-801 (NMDA antagonist), manumycin A and FTase inhibitor 1 (farnesyltransferase inhibitors), PP1 (Src-family tyrosine kinase inhibitor), PD98059 [mitogen-activated protein kinase (MAPK) inhibitor], and LY294002 [phosphatidylinositol 3-kinase (PI3-k) inhibitor] were added 20 min before A beta treatment of the cells. A beta induced a time- and concentration-dependent activation of NF-kappa B (1 mu M, 12 hr); both p50/p65 and p50/p50 NF-kappa B dimers were involved. This activation was abolished by MK-801 and attenuated by manumycin A, FTase inhibitor 1, PP1, PD98059, and LY294002. AP at 1 mu M increased the expression of inhibitory protein I kappa B, brain-derived neurotrophic factor, inducible nitric oxide synthase, tumor necrosis factor-alpha, and interleukin-1 beta as shown by RTPCR assays. Collectively, these findings suggest that AP activates NF-kappa B by an NMDA-Src-Ras-like protein through MAPK and PI3-k pathways in cultured cerebellar cells. This pathway may mediate an adaptive, neuroprotective response to A beta. (c) 2007 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die Alzheimer’sche Erkrankung (AD) ist die am häufigsten vorkommende Form der Demenz. Die Spaltung des APP scheint eine große Rolle in der Pathologie der Erkrankung zu spielen. APP kann auf zwei Wegen prozessiert werden. Dem amyloidogenen Weg, bei dem neben einem löslichen extrazellulären Fragment (sAPPβ) und der APP Intrazellulären Domäne (AICD) auch Aβ entsteht. Auf dem nicht-amyloidogenen Weg entsteht sAPPα, p3 und die AICD. Dem sAPPα werden neuroprotektiv Eigenschaften zugeschrieben. rnEs konnte gezeigt werden, dass sAPPα in jungen IMR90 Zellen, den durch proteasomalen Stress ausgelösten Anstieg der Bag3 und Hsp70 Proteinlevel senkt. Gleichzeitig konnte gezeigt werden, dass sAPPα die Zellviabilität nach proteasomalen Stress erhöht und weniger Aggresomen gebildet werden. Die Analyse der proteasomalen Aktivität zeigte, dass sAPPα die proteasomale Aktivität gestresster junger Zellen erhöhen kann. In alten IMR90 Zellen konnte keine Beeinflussung der Autophagie und der proteasomalen Aktivität festgestellt werden. Das ist ein Anhaltspunkt dafür, dass im Alter das Proteasom zu stark geschädigt ist, um durch sAPPα aktiviert zu werden. Das bei der amyloidogenen Prozessierung von APP entstehende sAPPβ zeigte eine ähnliche protektive Eigenschaft. rnInsgesamt konnte ein protektiver Einfluss von sAPPα und sAPPβ unter proteotoxischen Bedingungen in jungen und klonalen Zellen gezeigt werden, wodurch die Zellviabilität verbessert wird. rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amyloid precursor protein (APP) and amyloid-beta (Abeta) appear to participate in the pathophysiology of retinal ganglion cell (RGC) death in glaucoma. We, therefore, determined the distribution of APP and Abeta in the retinas of C57BL/6 mice after induction of chronic ocular hypertension.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: Evidence suggests that altered metabolism of amyloid precursor protein (APP) may play a role in the pathophysiology of retinal ganglion cell (RGC) death in the etiology of glaucoma. The authors sought to determine the distribution of APP and amyloid-beta (Abeta) in DBA/2J glaucomatous mouse retinas. METHODS: The retinas of 3- and 15-month-old DBA/2J mice and C57/BL-6 mice (control group) were fixed with 4% paraformaldehyde and processed for immunohistochemistry. Antibodies used included a polyclonal antibody to the C terminus of Abeta 40 and a polyclonal antibody to the APP ectodomain. Immunohistochemically stained tissue was graded using light microscopy. Distribution and semiquantitative expression of APP and Abeta in young and old glaucomatous and normal retinas were determined and compared. RESULTS: Strong APP and Abeta immunoreactivity was found in the RGC layer, optic nerve, and pia/dura of old DBA/2J retinas, with considerably higher intensity found in the old compared with the young DBA/2J mice. In contrast to glaucomatous mice, the control group did not show any notable age-related difference. CONCLUSIONS: Disruption of the homeostatic properties of secreted APP with consecutive Abeta cytotoxicity might be a contributing factor of ganglion cell loss in glaucomatous mouse retinas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cholinergic pathways serve important functions in learning and memory processes, and deficits in cholinergic transmission occur in Alzheimer disease (AD). A subset of muscarinic cholinergic receptors are linked to G-proteins that activate phospholipase C, resulting in the liberation of inositol trisphosphate and Ca2+ release from intracellular stores. We now report that amyloid beta-peptide (Abeta), which forms plaques in the brain in AD, impairs muscarinic receptor activation of G proteins in cultured rat cortical neurons. Exposure of rodent fetal cortical neurons to Abeta25-35 and Abeta1-40 resulted in a concentration and time-dependent attenuation of carbachol-induced GTPase activity without affecting muscarinic receptor ligand binding parameters. Downstream events in the signal transduction cascade were similarly attenuated by Abeta. Carbachol-induced accumulation of inositol phosphates (IP, IP2, IP3, and IP4) was decreased and calcium imaging studies revealed that carbachol-induced release of calcium was severely impaired in neurons pretreated with Abeta. Muscarinic cholinergic signal transduction was disrupted with subtoxic levels of exposure to AP. The effects of Abeta on carbachol-induced GTPase activity and calcium release were attenuated by antioxidants, implicating free radicals in the mechanism whereby Abeta induced uncoupling of muscarinic receptors. These data demonstrate that Abeta disrupts muscarinic receptor coupling to G proteins that mediate induction of phosphoinositide accumulation and calcium release, findings that implicate Abeta in the impairment of cholinergic transmission that occurs in AD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A soluble form of Alzheimer disease amyloid beta-protein (sA beta) is transported in the blood and cerebrospinal fluid mainly complexed with apolipoprotein J (apoJ). Using a well-characterized in situ perfused guinea pig brain model, we recently obtained preliminary evidence that apoJ facilitates transport of sA beta (1-40)-apoJ complexes across the blood-brain barrier and the blood-cerebrospinal fluid barrier, but the mechanisms remain poorly understood. In the present study, we examined the transport process in greater detail and investigated the possible role of glycoprotein 330 (gp330)/megalin, a receptor for multiple ligands, including apoJ. High-affinity transport systems with a Km of 0.2 and 0.5 nM were demonstrated for apoJ at the blood-brain barrier and the choroid epithelium in vivo, suggesting a specific receptor-mediated mechanism. The sA beta (1-40)-apoJ complex shared the same transport mechanism and exhibited 2.4- to 10.2-fold higher affinity than apoJ itself. Binding to microvessels, transport into brain parenchyma, and choroidal uptake of both apoJ and sA beta (1-40)-apoJ complexes were markedly inhibited (74-99%) in the presence of a monoclonal antibody to gp330/megalin and were virtually abolished by perfusion with the receptor-associated protein, which blocks binding of all known ligands to gp330. Western blot analysis of cerebral microvessels with the monoclonal antibody to gp330 revealed a protein with a mass identical to that in extracts of kidney membranes enriched with gp330/megalin, but in much lower concentration. The findings suggest that gp330/megalin mediates cellular uptake and transport of apoJ and sA beta (1-40)-apoJ complex at the cerebral vascular endothelium and choroid epithelium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cerebrovascular amyloid beta-protein (Abeta) deposition is a pathological feature of several related disorders including Alzheimer disease and hereditary cerebral hemorrhage with amyloidosis Dutch-type (HCHWA-D). HCHWA-D is caused by a point mutation in the gene that encodes the Abeta precursor and results in a Glu --> Gln substitution at position 22 of Abeta. In comparison to Alzheimer disease, the cerebrovascular Abeta deposition in HCHWA-D is generally more severe, often resulting in intracerebral hemorrhage when patients reach 50 years of age. We recently reported that Abeta(1-42), but not the shorter Abeta(1-40) induces pathologic responses in cultured human leptomeningeal smooth muscle cells including cellular degeneration that is accompanied by a marked increase in the levels of cellular Abeta precursor and soluble Abeta peptide. In the present study, we show that the HCHWA-D mutation converts the normally nonpathologic Abeta(1-40) into a highly pathologic form of the peptide for cultured human leptomeningeal smooth muscle cells. These findings suggest that these altered functional properties of HCHWA-D mutated Abeta may contribute to the early and often severe cerebrovascular pathology that is the hallmark of this disorder.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Alzheimer disease 40-residue amyloid beta protein (AbetaP[1-40]) forms cation-selective channels across acidic phospholipid bilayer membranes with spontaneous transitions over a wide range of conductances ranging from 40 to 4000 pS. Zn2+ has been reported to bind to AbetaP[1-40] with high affinity, and it has been implicated in the formation of amyloid plaques. We now report the functional consequences of such Zn2+ binding for the AbetaP[1-40] channel. Provided the AbetaP[1-40] channel is expressed in the low conductance (<400 pS) mode, Zn2+ blocks the open channel in a dose- dependent manner. For AbetaP[1-40] channels in the giant conductance mode (>400 pS), Zn2+ doses in the millimolar range were required to exert substantial blockade. The Zn2+ chelator o-phenanthroline reverses the blockade. We also found that Zn2+ modulates AbetaP[1-40] channel gating and conductance only from one side of the channel. These data are consistent with predictions of our recent molecular modeling studies on AbetaP[1-40] channels indicating asymmetric Zn(2+)-AbetaP[1-40] interactions at the entrance to the pore.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have studied the fibrillogenesis of synthetic amyloid beta-protein-(1-40) fragment (A beta) in 0.1 M HCl. At low pH, A beta formed fibrils at a rate amenable to detailed monitoring by quasi-elastic light-scattering spectroscopy. Examination of the fibrils with circular dichroism spectroscopy and electron microscopy showed them to be highly similar to those found in amyloid plaques. We determined the hydrodynamic radii of A beta aggregates during the entire process of fibril nucleation and growth. Above an A beta concentration of approximately 0.1 mM, the initial rate of elongation and the final size of fibrils were independent of A beta concentration. Below an A beta concentration of 0.1 mM, the initial elongation rate was proportional to the peptide concentration, and the resulting fibrils were significantly longer than those formed at higher concentration. We also found that the surfactant n-dodecylhexaoxyethylene glycol monoether (C12E6) slowed nucleation and elongation of fibrils in a concentration-dependent manner. Our observations are consistent with a model of A beta fibrillogenesis that includes the following key steps: (i) peptide micelles form above a certain critical A beta concentration, (ii) fibrils nucleate within these micelles or on heterogeneous nuclei (seeds), and (iii) fibrils grow by irreversible binding of monomers to fibril ends. Interpretation of our data enabled us to determine the sizes of fibril nuclei and A beta micelles and the rates of fibril nucleation (from micelles) and fibril elongation. Our approach provides a powerful means for the quantitative assay of A beta fibrillogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neurodegenerative processes in Alzheimer disease (AD) are thought to be driven in part by the deposition of amyloid beta (A beta), a 39- to 43-amino acid peptide product resulting from an alternative cleavage of amyloid precursor protein. Recent descriptions of in vitro neurotoxic effects of A beta support this hypothesis and suggest toxicity might be mediated by A beta-induced neuronal calcium disregulation. In addition, it has been reported that "aging" A beta results in increased toxic potency due to peptide aggregation and formation of a beta-sheet secondary structure. In addition, A beta might also promote neuropathology indirectly by activating immune/inflammatory pathways in affected areas of the brain (e.g., cortex and hippocampus). Here we report that A beta can modulate cytokine secretion [interleukins 6 and 8 (IL-6 and IL-8)] from human astrocytoma cells (U-373 MG). Freshly prepared and aged A beta modestly stimulated IL-6 and IL-8 secretion from U-373 MG cells. However, in the presence of interleukin-1 beta (IL-1 beta), aged, but not fresh, A beta markedly potentiated (3- to 8-fold) cytokine release. In contrast, aged A beta did not potentiate substance P (NK-1)- or histamine (H1)-stimulated cytokine production. Further studies showed that IL-1 beta-induced cytokine release was potentiated by A beta-(25-35), while A beta-(1-16) was inactive. Calcium disregulation may be responsible for the effects of A beta on cytokine production, since the calcium ionophore A23187 similarly potentiated IL-1 beta-induced cytokine secretion and EGTA treatment blocked either A beta or A23187 activity. Thus, chronic neurodegeneration in AD-affected brain regions may be mediated in part by the ability of A beta to exacerbate inflammatory pathways in a conformation-dependent manner.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Alzheimer disease (AD) the amyloid beta-peptide (A beta) accumulates in plaques in the brain. A beta can be neurotoxic by a mechanism involving induction of reactive oxygen species (ROS) and elevation of intracellular free calcium levels ([Ca2+]i). In light of evidence for an inflammatory response in the brain in AD and reports of increased levels of tumor necrosis factor (TNF) in AD brain we tested the hypothesis that TNFs affect neuronal vulnerability to A beta. A beta-(25-35) and A beta-(1-40) induced neuronal degeneration in a concentration- and time-dependent manner. Pretreatment of cultures for 24 hr with TNF-beta or TNF-alpha resulted in significant attenuation of A beta-induced neuronal degeneration. Accumulation of peroxides induced in neurons by A beta was significantly attenuated in TNF-pretreated cultures, and TNFs protected neurons against iron toxicity, suggesting that TNFs induce antioxidant pathways. The [Ca2+]i response to glutamate (quantified by fura-2 imaging) was markedly potentiated in neurons exposed to A beta, and this action of A beta was suppressed in cultures pretreated with TNFs. Electrophoretic mobility-shift assays demonstrated an induction of a kappa beta-binding activity in hippocampal cells exposed to TNFs. Exposure of cultures to I kappa B (MAD3) antisense oligonucleotides, a manipulation designed to induce NF-kappa B, mimicked the protection by TNFs. These data suggest that TNFs protect hippocampal neurons against A beta toxicity by suppressing accumulation of ROS and Ca2+ and that kappa B-dependent transcription is sufficient to mediate these effects. A modulatory role for TNF in the neurodegenerative process in AD is proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cellular thiols are critical moieties in signal transduction, regulation of gene expression, and ultimately are determinants of specific protein activity. Whilst protein bound thiols are the critical effector molecules, low molecular weight thiols, such as glutathione, play a central role in cytoprotection through (1) direct consumption of oxidants, (2) regeneration of protein thiols and (3) export of glutathione containing mixed disulphides. The brain is particularly vulnerable to oxidative stress, as it consumes 20% of oxygen load, contains high concentrations of polyunsaturated fatty acids and iron in certain regions, and expresses low concentrations of enzymic antioxidants. There is substantial evidence for a role for oxidative stress in neurodegenerative disease, where excitotoxic, redox cycling and mitochondrial dysfunction have been postulated to contribute to the enhanced oxidative load. Others have suggested that loss of important trophic factors may underlie neurodegeneration. However, the two are not mutually exclusive; using cell based model systems, low molecular weight antioxidants have been shown to play an important neuroprotective role in vitro, where neurotrophic factors have been suggested to modulate glutathione levels. Glutathione levels are regulated by substrate availability, synthetic enzyme and metabolic enzyme activity, and by the presence of other antioxidants, which according to the redox potential, consume or regenerate GSH from its oxidised partner. Therefore we have investigated the hypothesis that amyloid beta neurotoxicity is mediated by reactive oxygen species, where trophic factor cytoprotection against oxidative stress is achieved through regulation of glutathione levels. Using PC12 cells as a model system, amyloid beta 25-35 caused a shift in DCF fluorescence after four hours in culture. This fluorescence shift was attenuated by both desferioxamine and NGF. After four hours, cellular glutathione levels were depleted by as much as 75%, however, 24 hours following oxidant exposure, glutathione concentration was restored to twice the concentration seen in controls. NGF prevented both the loss of viability seen after 24 hours amyloid beta treatment and also protected glutathione levels. NGF decreased the total cellular glutathione concentration but did not affect expression of GCS. In conclusion, loss of glutathione precedes cell death in PC12 cells. However, at sublethal doses the surviving fraction respond to oxidative stress by increasing glutathione levels, where this is achieved, at least in part, at the gene level through upregulation of GCS. Whilst NGF does protect against oxidative toxicity, this is not achieved through upregulation of GCS or glutathione.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spatial distribution of the diffuse, primitive, and classic amyloid-beta deposits was studied in the upper laminae of the superior frontal gyrus in cases of sporadic Alzheimer disease (AD). Amyloid-beta-stained tissue was counterstained with collagen IV to determine whether the spatial distribution of the amyloid-beta deposits along the cortex was related to blood vessels. In all patients, amyloid-beta deposits and blood vessels were aggregated into distinct clusters and in many patients, the clusters were distributed with a regular periodicity along the cortex. The clusters of diffuse and primitive deposits did not coincide with the clusters of blood vessels in most patients. However, the clusters of classic amyloid-beta deposits coincided with those of the large diameter (>10 microm) blood vessels in all patients and with clusters of small-diameter (< 10 microm) blood vessels in four patients. The data suggest that, of the amyloid-beta subtypes, the clusters of classic amyloid-beta deposits appear to be the most closely related to blood vessels and especially to the larger-diameter, vertically penetrating arterioles in the upper cortical laminae.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Significant amyloid-beta (Abeta) deposition in cases of dementia with Lewy bodies (DLB) may represent concurrent Alzheimer's disease (AD). To test this hypothesis, the laminar distribution of the diffuse, primitive, and classic Abeta deposits was studied in the frontal and temporal cortex in cases of DLB and were compared with AD. In DLB, the diffuse and primitive deposits exhibited two common patterns of distribution; either maximum density occurred in the upper cortical laminae or a bimodal distribution was present with density peaks in the upper and lower laminae. In addition, a bimodal distribution of the classic deposits was observed in approximately half of the cortical areas analysed. A number of differences in the laminar distributions of Abeta deposits were observed in DLB and AD. First, the proportion of the primitive relative to the diffuse and classic deposits present was lower in DLB compared with AD. Second, the primitive deposits were more frequently bimodally distributed in DLB. Third, the density of the diffuse deposits reached a maximum lower in the cortical profile in AD. These data suggest differences in the pattern of cortical degeneration in the two disorders and therefore, DLB cases with significant Abeta pathology may not represent the coexistence of DLB and AD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The density of diffuse, primitive, classic and compact beta-amyloid (beta/A4) deposits was studied in the medial temporal lobe in 12 cases of Down's syndrome (DS) from 38 to 67 years of age. Total beta/A4 deposit density was greater in the adjacent cortex compared with regions of the hippocampus, and these differences were similar within each age group of patients. The ratio of the primitive to diffuse deposits was greater in the hippocampus than in the adjacent cortex. Total beta/A4 density did not vary significantly with patient age. However, the density of the diffuse deposits exhibited a parabolic, and the primitive, classic and compact deposits an inverted parabolic, response with age. Hence, in DS, (1) beta/A4 density remains relatively constant with age, (2) differences in beta/A4 density between the hippocampus and adjacent cortex are established at an early age, and (3) mature beta/A4 subtype formation depends on brain region and patient age.