986 resultados para Amorphous Materials, Physical Properties, Handling and Disposal, Oil and Grease, Used Oils


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of high pressure homogenisation (HPH) and heat treatments on physicochemical properties and physical stability of almond and hazelnut milks was studied. Vegetable milks were obtained and homogenised by applying 62, 103 and 172 MPa (MF1, MF2 and MF3, respectively). Untreated and MF3 samples were also submitted to two different heat treatments (85 °C/30 min (LH) or 121 °C/15 min (HH)). Physical and structural properties of the products were greatly affected by heat treatments and HPH. In almond milk, homogenised samples showed a significant reduction in particle size, which turned from bimodal and polydisperse to monodisperse distributions. Particle surface charge, clarity and Whiteness Index were increased and physical stability of samples was improved, without affecting either viscosity or protein stability. Hazelnut beverages showed similar trends, but HPH notably increased their viscosity while change their rheological behaviour, which suggested changes in protein conformation. HH treatments caused an increment of particle size due to the formation oil droplet-protein body clusters, associated with protein denaturation. Samples submitted to the combined treatment MF3 and LH showed the greatest stability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work was to study the effect of the hydrolysis degree (HD) and the concentration (C(PVA)) Of two types of poly(vinyl alcohol) (PVA) and of the type (glycerol and sorbitol) and the concentration (C(P)) of plasticizers on some physical properties of biodegradable films based on blends of gelatin and PVA Using a response-surface methodology. The films were prepared with a film forming solutions (FFS) with 2 g of macromolecules (gelatin+PVA)/100 g de FFS. The responses analyzed were the mechanical properties, the solubility, the moisture Content. the color difference and the opacity. The linear model was statistically significant and predictive for puncture force and deformation. elongation at break, solubility in water, Moisture content and opacity. The CPVA affected strongly the elongation at break of the films. The interaction of the HD and the C(P) affected this property. Moreover. the puncture force was affected slightly by the C(PVA). Concerning the Solubility in water, the reduction of the HD increased it and this effect was greater for high CPVA Values. In general. the most important effect observed in the physical properties of the films was that of the plasticizer type and concentration. The PVA hydrolysis degree and concentration have an important effect only for the elongation at break, puncture deformation and solubility in water. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four aliphatic thermoplastic poly(ester-urethane)s (PEUs) with similar molecular weights but varying polyesters molecular weight (534-1488 g/mol) were prepared from polyester diols, obtained by melt condensation of Azelaic acid and 1,9-Nonanediol, and 1,7-heptamethylene di-isocyanate (HPMDI) all sourced from vegetable oil feedstock. The thermal, and mechanical properties, and crystal structure of PEUs were investigated using DSC, TGA, DMA, tensile analysis and WAXD. For sufficiently long polyester chain, WAXD data indicated no hydrogen bonds polyethylene (PE)-like crystalline packing and for short polyester chains, small crystal domains with significant H-bonded polyamide (PA)-like packing. Crystallinity decreased with decreasing polyester molecular weights. The polymorphism of PEUs and consequently their melting characteristics were found to be largely controlled by polyester segment length. TGA of the PEUs indicated improved thermal stability with decreasing polyester chain length, suggesting a stabilization effect by urethane groups. Mechanical properties investigated by DMA and tensile analysis were found to scale predictably with the overall crystallinity of PEUs. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: This study evaluated the degree of conversion (DC) of four indirect resin composites (IRCs) with various compositions processed in different polymerization units and investigated the effect of thermal aging on the flexural strength and Vicker's microhardness.Materials and Methods: Specimens were prepared from four IRC materials, namely Gr 1: Resilab (Wilcos); Gr2: Sinfony (3M ESPE); Gr3: VITA VMLC (VITA Zahnfabrik); Gr4: VITA Zeta (VITA Zahnfabrik) using special molds for flexural strength test (N = 80, n = 10 per group) (25 x 2 x 2 mm(3), ISO 4049), for Vicker's microhardness test (N = 80, n = 10 per group) (5 x 4 mm(2)) and for DC (N = 10) using FT-Raman Spectroscopy. For both flexural strength and microhardness tests, half of the specimens were randomly stored in distilled water at 37 degrees C for 24 hours (Groups 1 to 4), and the other half (Groups 5 to 8) were subjected to thermocycling (5000 cycles, 5 to 55 +/- 1 degrees C, dwell time: 30 seconds). Flexural strength was measured in a universal testing machine (crosshead speed: 0.8 mm/min). Microhardness test was performed at 50 g. The data were analyzed using one-way and two-way ANOVA and Tukey's test (alpha = 0.05). The correlation between flexural strength and microhardness was evaluated with Pearson's correlation test (alpha = 0.05).Results: A significant effect for the type of IRC and thermocycling was found (p = 0.001, p = 0.001) on the flexural strength results, but thermocycling did not significantly affect the microhardness results (p = 0.078). The interaction factors were significant for both flexural strength and microhardness parameters (p = 0.001 and 0.002, respectively). Thermocycling decreased the flexural strength of the three IRCs tested significantly (p < 0.05), except for VITA Zeta (106.3 +/- 9.1 to 97.2 +/- 14 MPa) (p > 0.05) when compared with nonthermocycled groups. Microhardness results of only Sinfony were significantly affected by thermocycling (25.1 +/- 2.1 to 31 +/- 3.3 Kg/mm(2)). DC values ranged between 63% and 81%, and were not significantly different between the IRCs (p > 0.05). While a positive correlation was found between flexural strength and microhardness without (r = 0.309) and with thermocycling (r = 0.100) for VITA VMLC, negative correlations were found for Resilab under the same conditions (r = -0.190 and -0.305, respectively) (Pearson's correlation coefficient).Conclusion: Although all four IRCs presented nonsignificant DC values, flexural strength and microhardness values varied between materials with and without thermocycling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Achira (Canna indica L.) is a plant native to the Andes in South America, a starchy source, and its cultivation has expanded to different tropical countries, like Brazil. In order to evaluate the potential of this species, starch and flours with different particle size were obtained from Brazilian achira rhizomes. Proximal analyses, size distribution, SEM, swelling power, solubility, DSC, XRD analysis, and FTIR were performed for characterization of these materials. Flours showed high dietary fiber content (16.532.2% db) and high concentration of starch in the case of the smaller particle size fraction. Significant differences in protein and starch content, swelling power, solubility, and thermal properties were observed between the Brazilian and the Colombian starch. All the studied materials displayed the B-type XRD pattern with relative crystallinity of 20.1% for the flour and between 27.0 and 28.0% for the starches. Results showed that the starch and flour produced from achira rhizomes have great technological potential for use as functional ingredient in the food industry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis focuses on synthesis as well as investigations of the electronic structure and properties of Heusler compounds for spintronic and thermoelectric applications.rnThe first part reports on the electronic and crystal structure as well as the mechanical, magnetic, and transport properties of the polycrystalline Heusler compound Co2MnGe. The crystalline structure was examined in detail by extended X-ray absorption fine structure spectroscopy and anomalous X-ray diffraction. The low-temperature magnetic moment agrees well with the Slater-Pauling rule and indicates a half-metallic ferromagnetic state of the compound, as is predicted by ab-initio calculations. Transport measurements and hard X-ray photoelectron spectroscopy (HAXPES) were performed to explain the electronic structure of the compound.rnA major part of the thesis deals with a systematical investigation of Heusler compounds for thermoelectric applications. Few studies have been reported on thermoelectric properties of p-type Heusler compounds. Therefore, this thesis focuses on the search for new p-type Heusler compounds with high thermoelectric efficiency. The substitutional series NiTi1−xMxSn and CoTi1−xMxSb (where M = Sc, V and 0 ≤ x ≤ 0.2) were synthesized and investigated theoretically and experimentally with respect to electronic structure and transport properties. The results show the possibility to create n-type and p-type thermoelectrics within one Heusler compound. The pure compounds showed n-type behavior, while under Sc substitution the system switched to p-type behavior. A maximum Seebeck coefficient of +230 μV/K (at 350 K) was obtained for NiTi0.26Sc0.04Zr0.35Hf0.35Sn, which is one of the highest values for p-type thermoelectric compounds based on Heusler alloys up to now. HAXPES valence band measurement show massive in gap states for the parent compounds NiTiSn, CoTiSb and NiTi0.3Zr0.35Hf0.35Sn. This proves that the electronic states close to the Fermi energy play a key role for the behavior of the transport properties. Furthermore, the electronic structure of the gapless Heusler compounds PtYSb, PtLaBi and PtLuSb were investigated by bulk sensitive HAXPES. The linear behavior of the spectra close to εF proves the bulk origin of Dirac-cone type density of states. Furthermore, a systematic study on the optical and transport properties of PtYSb is presented. The compound exhibits promising thermoelectric properties with a high figure of merit (ZT = 0.2) and a Hall mobility μh of 300 cm2/Vs at 350 K.rnThe last part of this thesis describes the linear dichroism in angular-resolved photoemission from the valence band of NiTi0.9Sc0.1Sn and NiMnSb. High resolution photoelectron spectroscopy was performed with an excitation energy of hν = 7.938 keV. The linear polarization of the photons was changed using an in-vacuum diamond phase retarder. Noticeable linear dichroism is found in the valence bands and this allows for a symmetry analysis of the contributing states. The differences in the spectra are found to be caused by symmetry dependent angular asymmetry parameters, and these occur even in polycrystalline samples without preferential crystallographic orientation.rnIn summary, Heusler compounds with 1:1:1 and 2:1:1 stoichiometry were synthesized and examined by chemical and physical methods. Overall, this thesis shows that the combination of first-principle calculations, transport measurements and high resolution high energy photoelectron spectroscopy analysis is a very powerful tool for the design and development of new materials for a wide range of applications from spintronic applications to thermoelectric applications.rn

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reinforcement inclusions have been advocated to alleviate wear, compaction, and unstable surfaces in sports fields, but little research on the effects of these materials has been conducted in the USA. Experiments were established on a native silt loam and a sand rootzone matrix, seeded with a Kentucky bluegrass (Poa pratensis L.) blend, at the Joseph Troll Turf Research Center, University of Massachusetts, Amherst, USA to determine the effects of reinforcement inclusions on wear, surface hardness, traction, ball roll, ball bounce resilience, water infiltration rate, soil bulk density, air porosity, total porosity, and root weights. Three types of reinforcement inclusions (Sportgrass, Netlon, Turfgrids) were tested along with a non-reinforced control in a three year study. The treatments were set out in a randomized complete block design with four replications in both soils. No inclusion provided less wear or greater infiltration or air-filled porosity relative to the control. Reinforcement inclusions showed significant differences, however, in surface hardness, traction, and ball roll relative to the control, although this varied with the time of year. Infiltration rates, airfilled porosity, total pore space, bulk density, hardness, traction, ball roll, and ball rebound were greater on the sand rootzone than on the silt loam. Significant correlations were present between soil bulk density, surface hardness, traction, and ball roll. Based on our study, the use of reinforcement inclusions to provide better wear tolerance for sand or native soil athletic fields is not warranted. Certain playing surface characteristics, however, may be slightly improved with the use of reinforcement inclusions. The use of sands for sports surfaces is justified based upon the improvement in playing quality characteristics and soil physical properties important to a good playing surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel methodology based on instrumented indentation is developed to determine the mechanical properties of amorphous materials which present cohesive-frictional behaviour. The approach is based on the concept of a universal hardness equation, which results from the assumption of a characteristic indentation pressure proportional to the hardness. The actual universal hardness equation is obtained from a detailed finite element analysis of the process of sharp indentation for a very wide range of material properties, and the inverse problem (i.e. how to extract the elastic modulus, the compressive yield strength and the friction angle) from instrumented indentation is solved. The applicability and limitations of the novel approach are highlighted. Finally, the model is validated against experimental data in metallic and ceramic glasses as well as polymers, covering a wide range of amorphous materials in terms of elastic modulus, yield strength and friction angle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel methodology based on instrumented indentation was developed to characterize the mechanical properties of amorphous materials. The approach is based on the concept of a universal postulate that assumes the existence of a characteristic indentation pressure proportional to the hardness. This hypothesis was numerically validated. This method overcomes the limitation of the conventional indentation models (pile-up effects and pressure sensitivity materials).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Feed Materials Production Center, National Lead Company of Ohio"--Cover.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Reprinted by American society for testing materials ... from its copyrighted Proceedings, volume 30, part I, 1930."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study was made of the effect of blending practice upon selected physical properties of crude oils, and of various base oils and petroleum products, using a range of binary mixtures. The crudes comprised light, medium and heavy Kuwait crude oils. The properties included kinematic viscosity, pour point, boiling point and Reid vapour pressure. The literature related to the prediction of these properties, and the changes reported to occur on blending, was critically reviewed as a preliminary to the study. The kinematic viscosity of petroleum oils in general exhibited non-ideal behaviour upon blending. A mechanism was proposed for this behaviour which took into account the effect of asphaltenes content. A correlation was developed, as a modification of Grunberg's equation, to predict the viscosities of binary mixtures of petroleum oils. A correlation was also developed to predict the viscosities of ternary mixtures. This correlation showed better agreement with experimental data (< 6% deviation for crude oils and 2.0% for base oils) than currently-used methods, i.e. ASTM and Refutas methods. An investigation was made of the effect of temperature on the viscosities of crude oils and petroleum products at atmospheric pressure. The effect of pressure on the viscosity of crude oil was also studied. A correlation was developed to predict the viscosity at high pressures (up to 8000 psi), which gave significantly better agreement with the experimental data than the current method due to Kouzel (5.2% and 6.0% deviation for the binary and ternary mixtures respectively). Eyring's theory of viscous flow was critically investigated, and a modification was proposed which extends its application to petroleum oils. The effect of blending on the pour points of selected petroleum oils was studied together with the effect of wax formation and asphaltenes content. Depression of the pour point was always obtained with crude oil binary mixtures. A mechanism was proposed to explain the pour point behaviour of the different binary mixtures. The effects of blending on the boiling point ranges and Reid vapour pressures of binary mixtures of petroleum oils were investigated. The boiling point range exhibited ideal behaviour but the R.V.P. showed negative deviations from it in all cases. Molecular weights of these mixtures were ideal, but the densities and molar volumes were not. The stability of the various crude oil binary mixtures, in terms of viscosity, was studied over a temperature range of 1oC - 30oC for up to 12 weeks. Good stability was found in most cases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study is primarily concerned with the problem of break-squeal in disc brakes, using moulded organic disc pads. Moulded organic friction materials are complex composites and due to this complexity it was thought that they are unlikely to be of uniform composition. Variation in composition would under certain conditions of the braking system, cause slight changes in its vibrational characteristics thus causing resonance in the high audio-frequency range. Dynamic mechanical propertes appear the most likely parameters to be related to a given composition's tendency to promote squeal. Since it was necessary to test under service conditions a review was made of all the available commercial test instruments but as none were suitable it was necessary to design and develop a new instrument. The final instrument design, based on longitudinal resonance, enabled modulus and damping to be determined over a wide range of temperatures and frequencies. This apparatus has commercial value since it is not restricted to friction material testing. Both used and unused pads were tested and although the cause of brake squeal was not definitely established, the results enabled formulation of a tentative theory of the possible conditions for brake squeal. The presence of a temperature of minimum damping was indicated which may be of use to braking design engineers. Some auxilIary testing was also performed to establish the effect of water, oil and brake fluid and also to determine the effect of the various components of friction materials.