1000 resultados para Amniotic liquid.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The multiple banded antigen (MBA) is a predicted virulence factor of Ureaplasma species. Antigenic variation of the MBA is a potential mechanism by which ureaplasmas avoid immune recognition and cause chronic infections of the upper genital tract of pregnant women. We tested whether the MBA is involved in the pathogenesis of intra-amniotic infection and chorioamnionitis by injecting virulent or avirulent-derived ureaplasma clones (expressing single MBA variants) into the amniotic fluid of pregnant sheep. At 55 days of gestation pregnant ewes (n = 20) received intra-amniotic injections of virulent-derived or avirulent-derived U. parvum serovar 6 strains (2×104 CFU), or 10B medium (n = 5). Amniotic fluid was collected every two weeks post-infection and fetal tissues were collected at the time of surgical delivery of the fetus (140 days of gestation). Whilst chronic colonisation was established in the amniotic fluid of animals infected with avirulent-derived and virulent-derived ureaplasmas, the severity of chorioamnionitis and fetal inflammation was not different between these groups (p>0.05). MBA size variants (32–170 kDa) were generated in vivo in amniotic fluid samples from both the avirulent and virulent groups, whereas in vitro antibody selection experiments led to the emergence of MBA-negative escape variants in both strains. Anti-ureaplasma IgG antibodies were detected in the maternal serum of animals from the avirulent (40%) and virulent (55%) groups, and these antibodies correlated with increased IL-1β, IL-6 and IL-8 expression in chorioamnion tissue (p<0.05). We demonstrate that ureaplasmas are capable of MBA phase variation in vitro; however, ureaplasmas undergo MBA size variation in vivo, to potentially prevent eradication by the immune response. Size variation of the MBA did not correlate with the severity of chorioamnionitis. Nonetheless, the correlation between a maternal humoral response and the expression of chorioamnion cytokines is a novel finding. This host response may be important in the pathogenesis of inflammation-mediated adverse pregnancy outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article reports on the cleavage of lignin ß-aryl ether bonds in sugarcane bagasse by the ionic liquid (IL) trihexyl tetradecyl phosphonium chloride [P66614] Cl, in the presence of catalytic amounts of mineral acid fca. 0.4%). The deligniflcation process of bagasse was studied over a range of temperatures (120°C to 150°C) by monitoring the production of ß-ketones (indicative of cleavage of ß-aryl ethers) using FTIR spectroscopy and by compositional analysis of the undissolved fractions. Maximum deligniflcation was obtained at 150°C, with 52% of lignin removed from the original lignin content of bagasse. No deligniflcation was observed in the absence of acid, which suggests that the reaction is acid catalyzed with the IL solubilizing the lignin fragments. The rate of deligniflcation was significantly higher at 150°C, suggesting that crossing the glass transition temperature of lignin effects greater freedom of rotation about the propanoid carbon-carbon bonds and leads to increased cleavage of ß-aryl ethers. An attempt has been made to propose a probable mechanism of deligniflcation of bagasse with the phosphonuim IL. © Taylor & Francis Group, LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A biomass pretreatment process was developed using acidified ionic liquid (IL) solutions containing 10-30% water. Pretreatment of sugarcane bagasse at 130°C for 30min by aqueous 1-butyl-3-methylimidazolium chloride (BMIMCl) solution containing 1.2% HCl resulted in a glucan digestibility of 94-100% after 72h of enzymatic hydrolysis. HCl was found to be a more effective catalyst than H(2)SO(4) or FeCl(3). Increasing acid concentration (from 0.4% to 1.2%) and reaction temperature (from 90 to 130°C) increased glucan digestibility. The glucan digestibility of solid residue obtained with the acidified BMIMCl solution that was re-used for three times was >97%. The addition of water to ILs for pretreatment could significantly reduce IL solvent costs and allow for increased biomass loadings, making the pretreatment by ILs a more economic proposition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The conversion of biomass waste in the form of date seed into pyrolysis oil by fixed bed pyrolysis reactor has been taken into consideration in this study. A fixed bed pyrolysis has been designed and fabricated for obtaining liquid fuel from these date seeds. The major component of the system are fixed bed pyrolysis reactor, liquid condenser and liquid collector. The date seed in particle form is pyrolysed in an externally heated 7.6 cm diameter and 46 cm high fixed bed reactor with nitrogen as the carrier gas. The reactor is heated by means of a biomass source cylindrical heater from 4000C to 6000C. The products are oil, char and gas. The reactor bed temperature, running time and feed particle size are considered as process parameters. The parameters are found to influence the product yield significantly. A maximum liquid yield of 50 wt.% is obtained at a reactor bed temperature of 5000 C for a feed size volume of 0.11- 0.20 cm3 with a running time of 120 minutes. The pyrolysis oil obtained at this optimum process conditions are analyzed for some fuel properties and compared with some other biomass derived pyrolysis oils and also with conventional fuels. The oil is found to possess favorable flash point and reasonable density and viscosity. The higher calorific value is found to be 28.636 MJ/kg which is significantly higher than other biomass derived pyrolysis oils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among various thermo-chemical conversion processes, pyrolysis is considered as an emerging technology for liquid oil production. The conversion of biomass waste in the form of plum seed into pyrolysis oil by fixed bed pyrolysis reactor has been taken into consideration in this study. A fixed bed pyrolysis has been designed and fabricated for obtaining liquid fuel from this plum seeds. The major component of the system are fixed bed pyrolysis reactor, liquid condenser and liquid collectors. The plum seed in particle form is pyrolysed in an externally heated 7.6 cm diameter and 46 cm high fixed bed reactor with nitrogen as the carrier gas. The reactor is heated by means of a biomass source cylindrical heater from 4000C to 6000C. The products are oil, char and gas. The reactor bed temperature, running time and feed particle size are considered as process parameters. The parameters are found to influence the product yield significantly. A maximum liquid yield of 39 wt% of biomass feed is obtained with particle size of 2.36-4.75 mm at a reactor bed temperature of 520oC with a running time of 120 minutes. The pyrolysis oil obtained at this optimum process conditions are analyzed for some fuel properties and compared with some other biomass derived pyrolysis oils and conventional fuels. The oil is found to possess favorable flash point and reasonable density and viscosity. The higher calorific value is found to be 22.39 MJ/kg which is higher than other biomass derived pyrolysis oils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The renovation of biomass waste in the form of Mahogany seed waste into bio-fuel as well as activated carbon by fixed bed pyrolysis reactor has been taken into consideration in this study. The mahogany seed in particle form is pyrolyzed in an enormously heated fixed bed reactor with nitrogen as the carrier gas. The reactor is heated from 4000C to 6000C using a external heater in which rice husk and charcoal are used as the heater biomass fuel. Reactor bed temperature, running time and feed particle size have been varied to get the optimum operating conditions of the system. The parameters are found to influence the product yields to a large extent. A maximum liquid and char yield are 49 wt. % and 35 wt. % respectively obtained at a reactor bed temperature 5000C when the running time is 90 minutes. Acquired pyrolyzed oil at these optimal process conditions were analyzed for some of their properties as an alternative fuel. The oil possesses comparable flame temperature, favorable flash point and reasonable viscosity along with somewhat higher density. The kinematic viscosity of the derived fuel is 3.8 cSt and density is 1525 kg/m3. The higher calorific value is found 32.4 MJ/kg which is significantly higher than other biomass derived fuel. Moderate adsorption capacity of the prepared activated carbon in case of methyl blue & tea water was also revealed.