954 resultados para Ammonia batavus
Resumo:
The colour reaction between 3-phenyl-2-thiohydantoin and ammonia is studied quantitatively. Determinations of 0.1–0.6 μmoles of 3-phenyl-2-thiohydantoin are possible with a precision close to 2%. In analyses of amino acid mixtures for glycine after conversion to 3-phenyl-2-thiohydantoin, only derivatives of serine and threonine interfere to a slight extent. The specificity of the primary colour reaction with ammonia, and the structural requirements for it are discussed; a structure for the pigment species is proposed.
Resumo:
The equilibrium between cuprous ion, cupric ion and metallic copper has been studied using polarographic and redox potential measurements, by reducing cupric ion with copper gauze until equilibrium. Using the well-defined anodic diffusion current plateau, an amperometric method for estimating cuprous copper based on the titration of cuprous ion with dichromate or permanganate has been developed. The diffusion current constant and the disproportionation constant of cuprous ion and the standard potential for the reduction reaction of Cu2+ → Cu+ have been determined. Polarograms have been taken after reducing cupric complexes of ammonia and methylamine with copper until equilibrium. In the case of the copper-ammonia system, reduction to the cuprous state is practically complete while in the case of the cupric-methylamine system, the first cathodic wave occurs to some extent. A new method, called the polarographic-redox potential method, for determining the stability constants of cuprous and cupric complexes has been developed. The method depends upon the determination of the concentration of complexes by polarographic wave heights, and free cupric anc cuprous ions by redox potentials. The stability constants of the following complexes have been obtained: Cu(NH3)2+4, Cu(NH3)+2, Cu(CH3NH2)2(OH)2, Cu(CH3NH2)+2. The stability constants determined by the new method and the half-wave potential shift method agree and the value for the cupric-ammonia complex is in good agreement with Bjerrum method, indicating the reliability of this method.
Resumo:
The specific objective of this paper is to develop multivariable controllers that would achieve asymptotic regulation in the presence of parameter variations and disturbance inputs for a tubular reactor used in ammonia synthesis. A ninth order state space model with three control inputs and two disturbance inputs is generated from the nonlinear distributed model using linearization and lumping approximations. Using this model, an approach for control system design is developed keeping in view the imperfections of the model and the measurability of the state variables. Specifically, the design of feedforward and robust integral controllers using state and output feedback is considered. Also, the design of robust multiloop proportional integral controllers is presented. Finally the performance of these controllers is evaluated through simulation.
Resumo:
An ammonia loop heat pipe (LHP) with a flat plate evaporator is developed and tested. The device uses a nickel wick encased in an aluminum-stainless steel casing. The loop is tested for various heat loads and different sink temperatures, and it demonstrated reliable startup characteristics. Results with the analysis of the experimental observation indicate that the conductance between the compensation chamber and the heater plate can significantly influence the operating temperatures of the LHP. A mathematical model is also presented which is validated against the experimental observations.
Resumo:
This paper presents an optimization algorithm for an ammonia reactor based on a regression model relating the yield to several parameters, control inputs and disturbances. This model is derived from the data generated by hybrid simulation of the steady-state equations describing the reactor behaviour. The simplicity of the optimization program along with its ability to take into account constraints on flow variables make it best suited in supervisory control applications.
Resumo:
Dehydrogenation of ammonia borane was carried out in fluor alcohol solvent in order to obtain compounds that are more likely candidates suitable for regeneration. Even though ammonia borane undergoes self-dissociation in 2,2,2-trifluoroethanol to liberate H-2, decent hydrogen release rates were obtained by using Co-Co2B, Ni-Ni3B, and Co-Ni-B nanocomposites as catalysts. These catalysts are magnetic in nature and hence can be separated from the reaction mixture using a magnet for re-use. The final by-product NH4+ B(OCH2CF3)(4)(-) obtained after the catalytic dehydrogenation of ammonia borane was thoroughly characterized using H-1, B-11, and C-13 NMR and IR spectroscopies. The FTIR data showed that the B-O bond in NH4+ B(OCH2CF3)(4)(-) is slightly weaker compared to boric acid. Preliminary investigations on the regenerative routes for ammonia borane from the by-product NH4+ B(OCH2CF3)(4)(-) showed indications of the formation of BNHx species. (C) 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.
Resumo:
A fully automated, versatile Temperature Programmed Desorption (TDP), Temperature Programmed Reaction (TPR) and Evolved Gas Analysis (EGA) system has been designed and fabricated. The system consists of a micro-reactor which can be evacuated to 10−6 torr and can be heated from 30 to 750°C at a rate of 5 to 30°C per minute. The gas evolved from the reactor is analysed by a quadrupole mass spectrometer (1–300 amu). Data on each of the mass scans and the temperature at a given time are acquired by a PC/AT system to generate thermograms. The functioning of the system is exemplified by the temperature programmed desorption (TPD) of oxygen from YBa2Cu3−xCoxO7 ± δ, catalytic ammonia oxidation to NO over YBa2Cu3O7−δ and anaerobic oxidation of methanol to CO2, CO and H2O over YBa2Cu3O7−δ (Y123) and PrBa2Cu3O7−δ (Pr123) systems.
Resumo:
Arylvinamidines (2-, 3- or 4-aryl-4-(N,N-dimethyl)amino-1-azabuta-1,3-dienes), generated from 1,1,5,5-tetramethyl-2- or -3-phenyl-1,5-diazapentadienium salts, cyclocondense orientation-specifically under two regioselections forming 1-4' + 4-3' and 1-2' + 4-1' bonds on exposure to ammonia. The initial cyclates aromatise eliminatively to give mixtures of diarylpyridines and arylpyrimidines. The 2-arylvinamidines do not participate as 2-centre reactants and their 4-aryl isomers not as 4-centre reactants in the cyclocondensations which appear to be stepwise and not concerted. Reasons for the selective participation appear to be that the required eliminations from the initial cyclates are disfavoured in the first case and that a geometric factor prevents cyclate-formation in the second.