887 resultados para Alumina-titania


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report here on the preparation of La2/3Sr1/3MnO3 magnetoresistive thick films on polycrystalline Al2O3 substrates by using the screen printing technique. It is shown that films can be obtained using high temperature sintering. While there is a reacted layer, this improves adhesion and is not too troublesome if the films are made thick enough. It is shown that PbO-B2O3-SiO2 glass additives allow sintering at lower temperatures and can be used to improve the mechanical stress of the films. However, it is found that glass concentrations large enough to significantly improve the film adherence result in a weak low field magnetoresistance probably because grains are coated with high resistivity material. Strategies to overcome these difficulties are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different anchoring groups have been studied with the aim of covalently binding organic linkers to the surface of alumina ceramic foams. The results suggested that a higher degree of functionalization was achieved with a pyrogallol derivative - as compared to its catechol analogue - based on the XPS analysis of the ceramic surface. The conjugation of organic ligands to the surface of these alumina materials was corroborated by DNP-MAS NMR measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alumina supported niobium oxide was prepared by chemical vapor deposition (CVD) of NbCl5. The alumina was calcined and pretreated at differents temperatures in order to vary the density of OH groups on the surface which was determined by thermogravimetric analysis. A good correlation was found between the amount of anchored niobium and the total number of anionic sites (oxide and hydroxyl groups) on the surface of the alumina. The infrared spectra on the OH stretching region indicate that OH groups coordinated to at least one tetrahedral aluminum were more reactive towards NbCl5.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enamel suspensions were characterized according to their rheological behavior. The suspensions presented a pseudoplastic behavior, yield stress and thixotropy, with or without the presence of deffloculant. Added carboxymethylcellulose increases the apparent viscosity of enamel suspensions and interacts complexly with the deffloculant, here sodium silicate. Addition of crystalline particles of two types of alumina, used to improve the wear resistance of ceramic glazes, also change strongly the rheological behavior of the suspensions. Added high specific area, irregular alumina particles produce a higher increase of the apparent viscosity of enamel suspensions compared to rounded ones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titania powders were synthesized by a sol-gel process using titanium tetrabutoxide as precursor. The syntheses were performed in water or in solutions of dimethylformamide (dmf) or dimethylsulfoxide (dmso). It is demonstrated, by X-ray diffraction patterns of the synthesized powders, that the samples obtained in dmf or dmso solutions are crystalline (anatase phase) with some minor amount of brookite phase, whereas the sample synthesized in water is amorphous. The anatase phase can be obtained independently of any previous or further treatment of the synthesized powder, such as hydrothermal or heat treatment, providing a new, simple, quick and inexpensive route to synthesize anatase powders. From the peak broadening of the anatase (101) diffraction, the crystallite sizes were calculated as 6 nm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, aqueous suspensions of aluminas with different particle sizes were evaluated. The effect of pH on the electrosteric stabilization using PMAA-NH4 (ammonium polymethacrylate) as deflocculant was studied. The amount of deflocculant was optimized and rheologic properties were determined at four different pH values. Sedimentation was also evaluated. For suspensions with pH 4, an electrostatic mechanism of stabilization was observed, probably due to a flat adsorption of PMMA- on the alumina surface, leading to a small efficiency in relation to steric stabilization. For a suspension with pH 12, the steric mechanism of stabilization prevails. Suspensions with pH 7 and 9 present a higher flocculation degree. In relation to particle size, A-1000 samples present a smaller particle size, leading to a smaller interparticle distance (IPS), making stabilization more difficult.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple and sensitive on-line flow injection system for determination of zinc with FAAS has been described. The method is based on the separation and preconcentration of zinc on a microcolumn of immobilized Alizarin Red S on alumina. The adsorbed analyte is then eluted with 250 µL of nitric acid (1 mol L-1) and is transported to flame atomic absorption spectrometer for quantification. The effect of pH, sample and eluent flow rates and presence of various cations and anions on the retention of zinc was investigated. The sorption of zinc was quantitative in the pH range of 5.5-8.5. For a sample volume of 25 mL an enrichment factor of 144 and a detection limit (3S) of 0.2 µg L-1 was obtained. The precision (RSD, n=7) was 3.0% at the 20 µg L-1 level. The developed system was successfully applied to the determination of zinc in water samples, hair, urine and saliva.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Palladium catalysts supported on alumina and zirconia were prepared by the impregnation method and calcined at 600 and 1000 ºC. Catalysts were characterized by BET measurements, XRD, XPS, O2-TPD and tested in methane combustion through temperature programmed surface reaction. Alumina supported catalysts were slightly more active than zirconia supported catalysts, but after initial heat treatment at 1000 ºC, zirconia supported palladium catalyst showed better performance above 500 ºC A pattern between temperature interval stability of PdOx species and activity was observed, where better PdOx stability was associated with more active catalysts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple and fast approach for solid phase extraction is herein described, and used to determine trace amounts of Pb2+ and Cu2+ metal ions. The solid phase support is sodium dodecyl sulfate (SDS)-coated γ-alumina modified with bis(2-hydroxy acetophenone)-1,6-hexanediimine (BHAH) ligand. The adsorbed ions were stripped from the solid phase by 6 mL of 4 M nitric acid as eluent. The eluting solution was analyzed by flame atomic absorption spectrometry (FAAS). The sorption recovery of metal ions was investigated with regard to the effects of pH, amount of ligand, γ-alumina and surfactant and the amount and type of eluent. Complexation of BHAH with Pb2+ or Cu2+ ions was examined via spectrophotometry using the HypSpec program. The detection limit for Cu2+ was 7.9 µg L-1 with a relative standard deviation of 1.67%, while that for Pb2+ was 6.4 µg L-1 with a relative standard deviation of 1.64%. A preconcentration factor of 100 was achieved for these ions. The method was successfully applied to determine analyte concentrations in samples of liver, parsley, cabbage, and water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the influence of mechanical activation by intensive ball milling of a stoichiometric mixture of talc, kaolin, and alumina on the mechanism and kinetics of cordierite (2MgO·2Al2O3·5SiO2) formation was evaluated. The raw materials were characterized by chemical analysis, X-ray diffraction (XRD), laser diffraction, and helium pycnometry. The kinetics and mechanism of cordierite formation were studied by XRD, differential thermal analysis, and dilatometry in order to describe the phase formation as a function of temperature (1000-1400 ºC), time of thermochemical treatment (0-4 h), and grinding time of the mixture (0-45 min). Finally, the optimal conditions of the thermochemical treatment that ensured the formation of cordierite were determined: milling time of 45 min and thermal treatment at 1280 ºC for 1 h.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mild anodization (MA) reactor is exemplified for its operational simplicity and its excellent control over the experimental parameters that are involved in the anodization process. This method provides porous anodic alumina films with a regular cell-arrangement structure. This offers a better cost-benefit ratio than the other equipment configurations that are used to fabricate nanoporous structures (i.e., ion beam lithography). Conversely, the hard anodization (HA) reactor produces oxides at a rate that is 25 to 35 times faster than the MA reactor. The produced oxides also have greater layer thicknesses and interpore distance, and with a uniform nanopore spatial order (> 1000). In contrast to MA reactors, the construction of an HA reactor requires special components to maintain anodisation at a high potential regime. Herein, we describe and compare both reactors from a technical viewpoint.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work describes the sol-gel mixed oxide SiO2/TiO2 property, ST, as prepared, and submitted to heat treatment a 773 K, STC. SEM and EDS images show, within magnification used, a uniform distribution of the TiO2 particles in SiO2/TiO2 matrix. Both, ST and STC adsorb hydrogen peroxide on the surface and through EPR and UV-Vis diffuse reflectance spectra, it was possible to conclude that the species on the surface is the peroxide molecule attached to the Lewis acid site of titanium particle surface, alphaTi(H2O2)+. As the material is very porous, presumably the hydrogen peroxide molecule is confined in the matrix pores on the surface, a reason why the adsorbed species presents an exceptional long lived stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dental oxide ceramics have been inspired by their biocompability and mechanical properties which have made durable all-ceramic structures possible. Clinical longevity of the prosthetic structures is dependent on effective bonding with luting cements. As the initial shear bond strength values can be comparable with several materials and procedures, long-term durability is affected by ageing. Aims of the current study were: to measure the shear bond strength of resin composite-to-ceramics and to evaluate the longevity of the bond; to analyze factors affecting the bond, with special emphasis on: the form of silicatization of the ceramic surface; form of silanization; type of resin primer and the effect of the type of the resin composite luting cement; the effect of ageing in water was studied regarding its effect to the endurance of the bond. Ceramic substrates were alumina and yttrium stabilized zirconia. Ceramic conditioning methods included tribochemical silicatization and use of two silane couplings agents. A commercial silane primer was used as a control silane. Various combinations of conditioning methods, primers and resin cements were tested. Bond strengths were measured by shear bond strength method. The longevity of the bond was generally studied by thermocycling the materials in water. Additionally, in one of the studies thermal cycling was compared with long-term water storaging. Results were analysed statistically with ANOVA and Weibull analysis. Tribochemical treatment utilizing air pressure of 150 kPa resulted shear bond strengths of 11.2 MPa to 18.4 MPa and air pressure of 450 kPa 18.2 MPa to 30.5 MPa, respectively. Thermocycling of 8000 cycles or four years water storaging both decreased shear bond strength values to a range of 3.8 MPa to 7.2 MPa whereas initial situation varied from 16.8. Mpa to 23.0 MPa. The silane used in studies had no statistical significance. The use of primers without 10-MDP resulted spontaneous debonding during thermocycling or shear bond strengths below 5 MPa. As conclusion, the results showed superior long-term bonding with primers containing 10-MDP. Silicatization with silanizing showed improved initial shear bond strength values which considerably decreased with ageing in water. Thermal cycling and water storing for up to four years played the major role in reduction of bond strength, which could be due to thermal fatigue of the bonding interface and hydrolytic degradation of the silane coupled interface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bio-ethanol has been used as a fuel additive in modern society aimed at reducing CO2-emissions and dependence on oil. However, ethanol is unsuitable as fuel supplement in higher proportions due to its physico-chemical properties. One option to counteract the negative effects is to upgrade ethanol in a continuous fixed bed reactor to more valuable C4 products such as 1-butanol providing chemical similarity with traditional gasoline components. Bio-ethanol based valorization products also have other end-uses than just fuel additives. E.g. 1-butanol and ethyl acetate are well characterised industrial solvents and platform chemicals providing greener alternatives. The modern approach is to apply heterogeneous catalysts in the investigated reactions. The research was concentrated on aluminium oxide (Al2O3) and zeolites that were used as catalysts and catalyst supports. The metals supported (Cu, Ni, Co) gave very different product profiles and, thus, a profound view of different catalyst preparation methods and characterisation techniques was necessary. Additionally, acidity and basicity of the catalyst surface have an important role in determining the product profile. It was observed that ordinary determination of acid strength was not enough to explain all the phenomena e.g. the reaction mechanism. One of the main findings of the thesis is based on the catalytically active site which originates from crystallite structure. As a consequence, the overall evaluation of different by-products and intermediates was carried out by combining the information. Further kinetic analysis was carried out on metal (Cu, Ni, Co) supported self-prepared alumina catalysts. The thesis gives information for further catalyst developments aimed to scale-up towards industrially feasible operations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work Titania bulk powders and coatings were prepared by subjecting titanium isopropoxide solution to a controlled hydrolysis-condensation process. The powders were characterized using techniques such as FTIR for their chemical interactions, TG-DTA for the thermal decomposition features, XRD for the phase assemblage, BET specific surface area analysis for the textural features. The study discusses the preparation methods and the characterization techniques employed and a detailed discussion on the physico-chemical characterization of the prepared systems. The influence of dopants and leaching on the physico-chemical properties as well as their influence on photo activity is also included. The structural/functional coatings of different Titania compositions includes in this study. Coatings on pre-treated glass surfaces with the best compositions prepared showed 90 % transmittance in the visible region.