938 resultados para Algebraic Geometry


Relevância:

60.00% 60.00%

Publicador:

Resumo:

When applying computational mathematics in practical applications, even though one may be dealing with a problem that can be solved algorithmically, and even though one has good algorithms to approach the solution, it can happen, and often it is the case, that the problem has to be reformulated and analyzed from a different computational point of view. This is the case of the development of approximate algorithms. This paper frames in the research area of approximate algebraic geometry and commutative algebra and, more precisely, on the problem of the approximate parametrization.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Cunningham project seeks to factor numbers of the form bn±1 with b = 2, 3, . . . small. One of the most useful techniques is Aurifeuillian Factorization whereby such a number is partially factored by replacing bn by a polynomial in such a way that polynomial factorization is possible. For example, by substituting y = 2k into the polynomial factorization (2y2)2+1 = (2y2−2y+1)(2y2+2y+1) we can partially factor 24k+2+1. In 1962 Schinzel gave a list of such identities that have proved useful in the Cunningham project; we believe that Schinzel identified all numbers that can be factored by such identities and we prove this if one accepts our definition of what “such an identity” is. We then develop our theme to similarly factor f(bn) for any given polynomial f, using deep results of Faltings from algebraic geometry and Fried from the classification of finite simple groups.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Let C = (C, g^1/4 ) be a tetragonal curve. We consider the scrollar invariants e1 , e2 , e3 of g^1/4 . We prove that if W^1/4 (C) is a non-singular variety, then every g^1/4 ∈ W^1/4 (C) has the same scrollar invariants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The purpose of this study was to examine the effects of the use of technology on students’ mathematics achievement, particularly the Florida Comprehensive Assessment Test (FCAT) mathematics results. Eleven schools within the Miami-Dade County Public School System participated in a pilot program on the use of Geometers Sketchpad (GSP). Three of these schools were randomly selected for this study. Each school sent a teacher to a summer in-service training program on how to use GSP to teach geometry. In each school, the GSP class and a traditional geometry class taught by the same teacher were the study participants. Students’ mathematics FCAT results were examined to determine if the GSP produced any effects. Students’ scores were compared based on assignment to the control or experimental group as well as gender and SES. SES measurements were based on whether students qualified for free lunch. The findings of the study revealed a significant difference in the FCAT mathematics scores of students who were taught geometry using GSP compared to those who used the traditional method. No significant differences existed between the FCAT mathematics scores of the students based on SES. Similarly, no significant differences existed between the FCAT scores based on gender. In conclusion, the use of technology (particularly GSP) is likely to boost students’ FCAT mathematics test scores. The findings also show that the use of GSP may be able to close known gender and SES related achievement gaps. The results of this study promote policy changes in the way geometry is taught to 10th grade students in Florida’s public schools.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis analyzes the Chow motives of 3 types of smooth projective varieties: the desingularized elliptic self fiber product, the Fano surface of lines on a cubic threefold and an ample hypersurface of an Abelian variety. For the desingularized elliptic self fiber product, we use an isotypic decomposition of the motive to deduce the Murre conjectures. We also prove a result about the intersection product. For the Fano surface of lines, we prove the finite-dimensionality of the Chow motive. Finally, we prove that an ample hypersurface on an Abelian variety possesses a Chow-Kunneth decomposition for which a motivic version of the Lefschetz hyperplane theorem holds.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We consider Sklyanin algebras $S$ with 3 generators, which are quadratic algebras over a field $\K$ with $3$ generators $x,y,z$ given by $3$ relations $pxy+qyx+rzz=0$, $pyz+qzy+rxx=0$ and $pzx+qxz+ryy=0$, where $p,q,r\in\K$. this class of algebras has enjoyed much attention. In particular, using tools from algebraic geometry, Feigin, Odesskii \cite{odf}, and Artin, Tate and Van Den Bergh, showed that if at least two of the parameters $p$, $q$ and $r$ are non-zero and at least two of three numbers $p^3$, $q^3$ and $r^3$ are distinct, then $S$ is Artin--Schelter regular. More specifically, $S$ is Koszul and has the same Hilbert series as the algebra of commutative polynomials in 3 indeterminates (PHS). It has became commonly accepted that it is impossible to achieve the same objective by purely algebraic and combinatorial means like the Groebner basis technique. The main purpose of this paper is to trace the combinatorial meaning of the properties of Sklyanin algebras, such as Koszulity, PBW, PHS, Calabi-Yau, and to give a new constructive proof of the above facts due to Artin, Tate and Van Den Bergh. Further, we study a wider class of Sklyanin algebras, namely
the situation when all parameters of relations could be different. We call them generalized Sklyanin algebras. We classify up to isomorphism all generalized Sklyanin algebras with the same Hilbert series as commutative polynomials on
3 variables. We show that generalized Sklyanin algebras in general position have a Golod–Shafarevich Hilbert series (with exception of the case of field with two elements).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The existence of genuinely non-geometric backgrounds, i.e. ones without geometric dual, is an important question in string theory. In this paper we examine this question from a sigma model perspective. First we construct a particular class of Courant algebroids as protobialgebroids with all types of geometric and non-geometric fluxes. For such structures we apply the mathematical result that any Courant algebroid gives rise to a 3D topological sigma model of the AKSZ type and we discuss the corresponding 2D field theories. It is found that these models are always geometric, even when both 2-form and 2-vector fields are neither vanishing nor inverse of one another. Taking a further step, we suggest an extended class of 3D sigma models, whose world volume is embedded in phase space, which allow for genuinely non-geometric backgrounds. Adopting the doubled formalism such models can be related to double field theory, albeit from a world sheet perspective.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

En este artículo se explica cómo aparece la Geometría Algebraica, partiendo del estudio de los conjuntos de soluciones de sistemas algebraicos

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We give an elementary treatment of the defining representation and Lie algebra of the three-dimensional unitary unimodular group SU(3). The geometrical properties of the Lie algebra, which is an eight dimensional real Linear vector space, are developed in an SU(3) covariant manner. The f and d symbols of SU(3) lead to two ways of 'multiplying' two vectors to produce a third, and several useful geometric and algebraic identities are derived. The axis-angle parametrization of SU(3) is developed as a generalization of that for SU(2), and the specifically new features are brought out. Application to the dynamics of three-level systems is outlined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the general case, a trilinear relationship between three perspective views is shown to exist. The trilinearity result is shown to be of much practical use in visual recognition by alignment --- yielding a direct method that cuts through the computations of camera transformation, scene structure and epipolar geometry. The proof of the central result may be of further interest as it demonstrates certain regularities across homographies of the plane and introduces new view invariants. Experiments on simulated and real image data were conducted, including a comparative analysis with epipolar intersection and the linear combination methods, with results indicating a greater degree of robustness in practice and a higher level of performance in re-projection tasks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mavron, Vassili; Jungnickel, D.; McDonough, T.P., (2001) 'The Geometry of Frequency Squares', Journal of Combinatorial Theory, Series A 96, pp.376-387 RAE2008

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Suppose X is a projective toric scheme defined over a ring R and equipped with an ample line bundle L . We prove that its K-theory has a direct summand of the form K(R)(k+1) where k = 0 is minimal such that L?(-k-1) is not acyclic. Using a combinatorial description of quasi-coherent sheaves we interpret and prove this result for a ring R which is either commutative, or else left noetherian.