947 resultados para Adverse Drug Events
Resumo:
INTRODUCTION: There is now solid evidence for a relation between adverse life events (ALE) and psychotic symptoms in patients with psychosis and in the general population. A recent study has shown that this relation may be partially mediated by stress sensitivity, suggesting the influence of other factors. The aim of this study was to assess the mediation effect of emotion regulation strategies and stress sensitivity in the relation between ALE and attenuated positive psychotic symptoms (APPS) in the general population. METHODS: Hundred and twelve healthy volunteers were evaluated with measures of APPS, emotion regulation strategies, ALE and stress sensitivity. RESULTS: Results demonstrated that the relation between ALE, hallucination and delusion proneness was completely mediated by maladaptive emotion regulation strategies, but not by stress sensitivity. However, in addition to maladaptive emotion regulation strategies, stress sensitivity demonstrated a mediation effect between ALE and attenuated positive psychotic positive symptoms when positive psychotic symptoms were grouped together. CONCLUSIONS: There are probably several possible trajectories leading to the formation of positive psychotic symptoms and the results of the present study reveal that one such trajectory may involve the maladaptive regulation of negative emotions alongside a certain general vulnerability after experiencing ALE.
Resumo:
The objective of this study was to estimate the prevalence of adverse drug reactions (ADR) related to hospital admission of elderly people, identifying the use of potentially inappropriate medication (PIM), the ADR and the risk factors associated with the hospitalization. A cross-sectional study was conducted in a private hospital of São Paulo State, Brazil. All patients aged ≥ 60 years, admitted in the general practice ward in May 2006 were interviewed about the drugs used and the symptoms/complaints that resulted in hospitalization. More than a half (54.5 %) of elderly hospitalizations were related with ADR. The therapeutic classes involved with ADR were: cardiovascular (37.7 %), central nervous (34.6 %) and respiratory (5.7 %). The ADR observed were disorders in circulatory (28.4 %), digestive (20.0 %) and respiratory (18.9 %) tracts. 27 elderly had made PIM and in 20 of them this was the cause of hospitalization. Polypharmacy was an ADR risk factor (p = 0.021).These data allows the healthcare professionals upgrade, qualifying them in pharmcovigilance.
Resumo:
PURPOSE: To determine the incidence of and risk factors for adverse cardiac events during catecholamine vasopressor therapy in surgical intensive care unit patients with cardiovascular failure. METHODS: The occurrence of any of seven predefined adverse cardiac events (prolonged elevated heart rate, tachyarrhythmia, myocardial cell damage, acute cardiac arrest or death, pulmonary hypertension-induced right heart dysfunction, reduction of systemic blood flow) was prospectively recorded during catecholamine vasopressor therapy lasting at least 12 h. RESULTS: Fifty-four of 112 study patients developed a total of 114 adverse cardiac events, an incidence of 48.2 % (95 % CI, 38.8-57.6 %). New-onset tachyarrhythmia (49.1 %), prolonged elevated heart rate (23.7 %), and myocardial cell damage (17.5 %) occurred most frequently. Aside from chronic liver diseases, factors independently associated with the occurrence of adverse cardiac events included need for renal replacement therapy, disease severity (assessed by the Simplified Acute Physiology Score II), number of catecholamine vasopressors (OR, 1.73; 95 % CI, 1.08-2.77; p = 0.02) and duration of catecholamine vasopressor therapy (OR, 1.01; 95 % CI, 1-1.01; p = 0.002). Patients developing adverse cardiac events were on catecholamine vasopressors (p < 0.001) and mechanical ventilation (p < 0.001) for longer and had longer intensive care unit stays (p < 0.001) and greater mortality (25.9 vs. 1.7 %; p < 0.001) than patients who did not. CONCLUSIONS: Adverse cardiac events occurred in 48.2 % of surgical intensive care unit patients with cardiovascular failure and were related to morbidity and mortality. The extent and duration of catecholamine vasopressor therapy were independently associated with and may contribute to the pathogenesis of adverse cardiac events.
Resumo:
The spectrum of cutaneous adverse drug reactions (cADRs) ranges from benign presentations to severe life-threatening forms such as toxic epidermal necrolysis (TEN). In TEN, granulysin has been shown to be the key cytotoxic molecule. Still, little is known about the expression of granulysin in other cADRs. As an important source of granulysin, natural killer (NK) cells are of major interest in cADRs. Recently, NKp46 has been identified as the most selective NK-cell marker. However, the role of NKp46(+) cells in cADRs and their contribution to granulysin expression remain to be elucidated.
Resumo:
The antithyroid drugs mainly include thioimidazole (carbimazole, methimazole=thiamazole) and propylthiouracil. After absorption, carbimazole is rapidly metabolized to methimazole and thus switching between these two drugs should not be considered in case of side effects. Furthermore, in case of side effects, sometimes even cross reactions between thioimidazoles and propylthiouracil occur. Common and typical adverse reactions of antithyroid drugs include dose dependent hypothyroidism and thus thyroid function should be repeatedly checked while the patient is on antithyroid drugs. Furthermore, pruritus and rash may develop. In this case, one might try to switch from thioimidazoles to propylthiouracil or vice versa. Antithyroid drugs may cause mild dose dependent neutropenia or severe allergy-mediated agranulocytosis, which typically occurs during the first three months of treatment, has an incidence of 3 per 10,000 patients and cross reactivity between thioimidazoles to propylthiouracil may occur. Rarely, antithyroid drugs can cause aplastic anemia. Mainly propylthiouracil, but sometimes also methimazole may lead to an asymptomatic transient increase in liver enzymes or to severe, even lethal liver injury of cholestatic or hepatocellular pattern. Since propylthiouracil associated liver injury was observed increasingly among children and adolescent, it has been suggested to prefer thioimidazoles for these patients. Because of these potential serious adverse effects, physicians should advise patients to immediately seek medical help if they get a fever or sore throat or malaise, abdominal complaints or jaundice, respectively. Furthermore, arthralgias may develop in 1-5% of patients under both antithyroid drugs. Since arthralgias may be the first symptom of more serious immunologic side effects, it is recommended to stop the antithyroid drug in this case. Drug induced polyarthritis mainly develops during the first month of therapy, whereas ANCA-positive vasculitis is generally observed only after long term exposure to propylthiouracil or very rarely with the thioimidazoles. The teratogenic risk of the thioimidazoles is somewhat higher (Aplasia cutis congenita), that is why one generally recommends preferring propylthiouracil during pregnancy. During breast feeding both, thioimidazoles or propylthiouracil, may be administered. Nowadays, perchlorate is only used short term in case of latent hyperthyroidism before administering iodine-containing contrast agents. Therefore, the known side effects, which usually are only observed after long term treatment, are not an issue any more.
Resumo:
Patients with liver cirrhosis may be at risk for potential drug-drug interactions (pDDIs) and/or adverse drug reactions (ADRs) due to the severity of their disease and comorbidities associated with polypharmacy.
Resumo:
In clinical routine, adverse drug reactions (ADR) are common, and they should be included in the differential diagnosis in all patients undergoing drug treatment. Only part of those ADR are immune-mediated hypersensitivity reactions and thus true drug allergies. Far more common are non-immune-mediated ADR, e.g. due to the pharmacological properties of the drug or to the individual predisposition of the patient (enzymopathies, cytokine dysbalance, mast cell hyperreactivity). In true drug allergiesT cell- and immunoglobulin E (lgE)-mediated reactions dominate the clinical presentation. T cell-mediated ADR usually have a delayed appearance and include skin eruptions in most cases. Nevertheless, it should not be forgotten that they may involve systemic T cell activation and thus take a severe, sometimes lethal turn. Clinical danger signs are involvement of mucosal surfaces, blistering within the exanthematous skin areas and systemic symptoms, e.g. fever or malaise. Drug presentation via antigen-presenting cells to T cells can either involve the classical pathway of haptenization of endogenous proteins or be directly mediated via noncovalent binding to immune receptors (MHC molecules or T cell receptors), the so-called p-i concept. Flare-up reactions during the acute phase of T cell-mediated ADR should not be mistaken for true drug allergies, as they only occur in the setting of a highly activated T cell pool. IgE-mediated ADR are less frequent and involve mast cells and/or basophils as peripheral effector cells. Recent data suggest that certain patients with drug allergy have a preexistent sensitization although they have never been exposed to the culprit drug, probably due to cross-reactivity. Thus, allergic drug reactions on first encounter are possible. In general, the extent of cross-reactivity is higher in IgE-compared to T cell-mediated ADR. Based on a specific ethnic background and only for severe T cell-mediated ADR to certain drugs, a strong HLA association has been established recently.
Resumo:
To assess drug-related problems in patients with liver cirrhosis by investigating the prevalence of inadequately dosed drugs and their association with adverse drug reactions (ADRs) and hospitalizations.
Resumo:
Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Resumo:
Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014