942 resultados para Adsorption-isotherms


Relevância:

70.00% 70.00%

Publicador:

Resumo:

An integrated mathematical model for the kinetics of multicomponent adsorption on microporous carbon was developed. Transport in this bidisperse solid is represented by balance equations in the macropore and micropore phases, in which gas-phase diffusion dominates the mass transfer in the macropores, with the phenomenological diffusivities represented by the generalized Maxwell-Stefan (GMS) formulation. Viscous flow also contributes to the macropore fluxes and is included in the MS expressions. Diffusion of the adsorbed phase controls the mass transfer in the micro ore phase, p which is also described in a similar way by the MS method. The adsorption isotherms are represented by a new heterogeneous modified vacancy solution theory formulation of adsorption, which has proved to be a robust method for adsorption on activated carbons. The model is applied to the coadsorption and codesorption of C2H6 and C3H8 on Ajax and Norit carbon, as well as the displacement on Ajax carbon. The effect of the viscous flow in the macropore phase is not significant for the cases studied. The model accurately predicts the overshoot behavior and rollup of C2H6 during coadsorption. The prediction for the heavier compound C3H8 is always satisfactory, though at higher C3H8 mole fraction, the overshoot extent of C2H6 is overpredicted, possibly due to neglect of heat effects.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

MCM-41 periodic mesoporous silicates with a high degree of structural ordering are synthesized and used as model adsorbents to study the isotherm prediction of nitrogen adsorption. The nitrogen adsorption isotherm at 77 K for a macroporous silica is measured and used in high-resolution alpha(s)-plot comparative analysis to determine the external surface area, total surface area and primary mesopore volume of the MCM-41 materials. Adsorption equilibrium data of nitrogen on the different pore size MCM-41 samples (pore diameters from 2.40 to 4.92 nm) are also obtained. Based on the Broekhoff and de Boer' thermodynamic analysis, the nitrogen adsorption isotherms for the different pore size MCM-41 samples are interpreted using a novel strategy, in which the parameters of an empirical expression, used to represent the potential of interaction between the adsorbate and adsorbent, are obtained by fitting only the multilayer region prior to capillary condensation for C-16 MCM-41. Subsequently the entire isotherm, including the phase transition, is predicted for all the different pore size MCM-41 samples without any fitting. The results show that the prediction of multilayer adsorption and total adsorbed amount are in good agreement with the experimental isotherms. The predictions of the relative pressure corresponding to capillary equilibrium (coexistence) transition agree remarkably with experimental data on the adsorption branch even for hysteretic isotherms, confirming that this is the branch appropriate for pore size distribution analysis. The impact of pore radius on the adsorption film thickness and capillary coexistence pressure is also investigated, and found to agree with the experimental data. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquímica

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquímica

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this work, a volumetric unit previously assembled by the research group was upgraded. This unit revamping was necessary due to the malfunction of the solenoid valves employed in the original experimental setup, which were not sealing the gas properly leading to erroneous adsorption equilibrium measurements. Therefore, the solenoid valves were substituted by manual ball valves. After the volumetric unit improvement its operation was validated. For this purpose, the adsorption equilibrium of carbon dioxide (CO2) at 323K and 0 - 20 bar was measured on two different activated carbon samples, in the of extrudates (ANG6) and of a honeycomb monolith (ACHM). The adsorption equilibrium results were compared with data previously measured by the research group, using a high-pressure microbalance from Rubotherm GmbH (Germany) – gravimetric. The results obtained using both apparatuses are coincident thus validating the good operation of the volumetric unit upgraded in this work. Furthermore, the adsorption equilibrium of CO2 at 303K and 0 - 10 bar on Metal-Organic Frameworks (MOFs) Cu-BTC and Fe-BTC was also studied. The CO2 adsorption equilibrium results for both MOFs were compared with the literature results showing good agreement, which confirms the good quality of the experimental results obtained in the new volumetric unit. Cu-BTC sample showed significantly higher CO2 adsorption capacity when compared with the Fe-BTC sample. The revamping of the volumetric unit included a new valve configuration in order to allow testing an alternative method for the measurement of adsorption equilibrium. This new method was employed to measure the adsorption equilibrium of CO2 on ANG6 and ACHM at 303, 323 and 353K within 0-10 bar. The good quality of the obtained experimental data was testified by comparison with data previously obtained by the research group in a gravimetric apparatus.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The objective of this work was to investigate glyphosate adsorption by soils and its relationship with unoccupied binding sites for phosphate adsorption. Soil samples of three Chilean soils series - Valdivia (Andisol), Clarillo (Inceptisol) and Chicureo (Vertisol) - were incubated with different herbicide concentrations. Glyphosate remaining in solution was determined by adjusting a HPLC method with a UV detector. Experimental maximum adsorption capacity were 15,000, 14,300 and 4,700 mg g¹ for Valdivia, Clarillo, and Chicureo soils, respectively. Linear, Freundlich, and Langmuir models were used to describe glyphosate adsorption. Isotherms describing glyphosate adsorption differed among soils. Maximum adjusted adsorption capacity with the Langmuir model was 231,884, 17,874 and 5,670 mg g-1 for Valdivia, Clarillo, and Chicureo soils, respectively. Glyphosate adsorption on the Valdivia soil showed a linear behavior at the range of concentrations used and none of the adjusted models became asymptotic. The high glyphosate adsorption capacity of the Valdivia soil was probably a result of its high exchangeable Al, extractable Fe, and alophan and imogolite clay type. Adsorption was very much related to phosphate dynamics in the Valdivia soil, which showed the larger unoccupied phosphate binding sites. However relationship between unoccupied phosphate binding sites and glyphosate adsorption in the other two soils (Clarillo and Chicureo) was not clear.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The objective of this work was to assess the effects of pH and ionic strength upon zinc adsorption, in three highly weathered variable charge soils. Adsorption isotherms were elaborated from batch adsorption experiments, with increasing Zn concentrations (0-80 mg L-1), and adsorption envelopes were constructed through soil samples reactions with 0.01, 0.1 and 1 mol L-1 Ca(NO3)2 solutions containing 5 mg L-1 of Zn, with an increasing pH value from 3 to 8. Driving force of reaction was quantified by Gibbs free energy and separation factor. Isotherms were C-, H- and L-type and experimental results were fitted to nonlinear Langmuir model. Maximum adsorption ranged from 59-810 mg kg-1, and Zn affinity was greater in subsoil (0.13-0.81 L kg-1) than in the topsoil samples (0.01-0.34 L kg-1). Zinc adsorption was favorable and spontaneous, and showed sharply increase (20-90%) in the 4-6 pH range. No effect of ionic strength was observed at pH values below 5, because specific adsorption mechanisms predominated in the 3-5 pH range. Above pH 5, and in subsoil samples, Zn was adsorbed by electrostatic mechanisms, since ionic strength effect was observed. Despite depth and ionic strength effects, Zn adsorption depends mainly on the pH.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An activated carbon was obtained by chemical activation with phosphoric acid, CM, from a mineral carbon. Afterwards, the carbon was modified with 2 and 5 molL-1, CMox2 and CMox5 nitric acid solutions to increase the surface acid group contents. Immersion enthalpy at pH 4 values and Pb2+ adsorption isotherms were determined by immersing activated carbons in aqueous solution. The surface area values of the adsorbents and total pore volume were approximately 560 m².g-1 and 0.36 cm³g-1, respectively. As regards chemical characteristics, activated carbons had higher acid sites content, 0.92-2.42 meq g-1, than basic sites, 0.63-0.12 meq g-1. pH values were between 7.4 and 4.5 at the point of zero charge, pH PZC. The adsorbed quantity of Pb2+ and the immersion enthalpy in solution of different pH values for CM activated carbon showed that the values are the highest for pH 4, 15.7 mgg-1 and 27.6 Jg-1 respectively. Pb2+ adsorption isotherms and immersion enthalpy were determined for modified activated carbons and the highest values were obtained for the activated carbon that showed the highest content of total acid sites on the surface.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In recent decades, industrial activity growth and increasing water usage worldwide have led to the release of various pollutants, such as toxic heavy metals and nutrients, into the aquatic environment. Modified nanocellulose and microcellulose-based adsorption materials have the potential to remove these contaminants from aqueous solutions. The present research consisted of the preparation of five different nano/microcellulose-based adsorbents, their characterization, the study of adsorption kinetics and isotherms, the determination of adsorption mechanisms, and an evaluation of adsorbents’ regeneration properties. The same well known reactions and modification methods that were used for modifying conventional cellulose also worked for microfibrillated cellulose (MFC). The use of succinic anhydride modified mercerized nanocellulose, and aminosilane and hydroxyapatite modified nanostructured MFC for the removal of heavy metals from aqueous solutions exhibited promising results. Aminosilane, epoxy and hydroxyapatite modified MFC could be used as a promising alternative for H2S removal from aqueous solutions. In addition, new knowledge about the adsorption properties of carbonated hydroxyapatite modified MFC as multifunctional adsorbent for the removal of both cations and anions ions from water was obtained. The maghemite nanoparticles (Fe3O4) modified MFC was found to be a highly promising adsorbent for the removal of As(V) from aqueous solutions due to its magnetic properties, high surface area, and high adsorption capacity . The maximum removal efficiencies of each adsorbent were studied in batch mode. The results of adsorption kinetics indicated very fast removal rates for all the studied pollutants. Modeling of adsorption isotherms and adsorption kinetics using various theoretical models provided information about the adsorbent’s surface properties and the adsorption mechanisms. This knowledge is important for instance, in designing water treatment units/plants. Furthermore, the correspondence between the theory behind the model and properties of the adsorbent as well as adsorption mechanisms were also discussed. On the whole, both the experimental results and theoretical considerations supported the potential applicability of the studied nano/microcellulose-based adsorbents in water treatment applications.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Arsenic is a toxic substance. The amount of arsenic in waste water is a raising problem because of increasing mining industry. Arsenic is connected to cancers in areas where arsenic concentration in drinking water is higher than recommendations. The main object in this master’s thesis was to research how ferrous hydroxide waste material is adsorbed arsenic from ammonia containing waste water. In this master’s thesis there is two parts: theoretical and experimental part. In theoretical part harmful effects of arsenic, theory of adsorption, isotherms modeling of adsorption and analysis methods of arsenic are described. In experimental part adsorption capacity of ferrous hydroxide waste material and adsorption time with different concentrations of arsenic were studied. Waste material was modified with two modification methods. Based on experimental results the adsorption capacity of waste material was high. The problem with waste material was that at same time with arsenic adsorption sulfur was dissolving in solution. Waste material was purified from sulfur but purification methods were not efficient enough. Purification methods require more research.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The interaction between three phenolic compounds (catechin, caffeic acid and ferulic acid) onto two dietary fibres (cellulose and xylan) has been evaluated to inquire possible interferences on the biodisponibility of phenolic compounds. The adsorption kinetics were performed using solutions containing 100 mg/L of phenolic compounds during a contact time ranging between 10 and 120 minutes at pH 2.0, 4.5, and 7.0. After the kinetics, isotherms were obtained using phenolic compounds concentration ranging between 10 and 80 mg/L during 60 minutes, at pH 2.0 and 7.0 and temperature of 36 °C. Results indicate that adsorbed quantities mainly changed in function of pH, however the maximum adsorption was only of 0.978 mg of caffeic acid/g of xylan at pH 2 and after 60 min. Redlich-Peterson model were able to predict the adsorption isotherms of all phenolic compounds onto cellulose, except for caffeic acid at pH 7.0. The low adsorption capacities observed suggest that both dietary fibres are unable to compromise the biodisponibility of phenolic compounds, especially in the small intestine, where they are partially absorbed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We report ellipsometrically obtained adsorption isotherms for a carefully chosen test liquid on block copolymer films of Kraton G1650, compared with adsorption isotherms on homogeneous films of the constituent polymers. Standard atomic force microscopy images imply the outer surface of Kraton G1650 is chemically patterned on the nanoscale, but this could instead be a reflection of structure buried beneath a 10 nm layer of the lower energy component. Our test liquid was chosen on the basis that it did not dissolve in either component and in addition that it was nonwetting on the lower energy polymer while forming thick adsorbed films on pure substrates of the higher energy component. Our ellipsometry data for Kraton G1650 rule out the presence of segregation by the lower energy constituent to the outer surface, implying a mixed surface consistent with Cassie's law. We discuss implications of our findings and related work for the outer surface structures of block copolymer films.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Using the plausible model of activated carbon proposed by Harris and co-workers and grand canonical Monte Carlo simulations, we study the applicability of standard methods for describing adsorption data on microporous carbons widely used in adsorption science. Two carbon structures are studied, one with a small distribution of micropores in the range up to 1 nm, and the other with micropores covering a wide range of porosity. For both structures, adsorption isotherms of noble gases (from Ne to Xe), carbon tetrachloride and benzene are simulated. The data obtained are considered in terms of Dubinin-Radushkevich plots. Moreover, for benzene and carbon tetrachloride the temperature invariance of the characteristic curve is also studied. We show that using simulated data some empirical relationships obtained from experiment can be successfully recovered. Next we test the applicability of Dubinin's related models including the Dubinin-Izotova, Dubinin-Radushkevich-Stoeckli, and Jaroniec-Choma equations. The results obtained demonstrate the limits and applications of the models studied in the field of carbon porosity characterization.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The adsorption of gases on microporous carbons is still poorly understood, partly because the structure of these carbons is not well known. Here, a model of microporous carbons based on fullerene- like fragments is used as the basis for a theoretical study of Ar adsorption on carbon. First, a simulation box was constructed, containing a plausible arrangement of carbon fragments. Next, using a new Monte Carlo simulation algorithm, two types of carbon fragments were gradually placed into the initial structure to increase its microporosity. Thirty six different microporous carbon structures were generated in this way. Using the method proposed recently by Bhattacharya and Gubbins ( BG), the micropore size distributions of the obtained carbon models and the average micropore diameters were calculated. For ten chosen structures, Ar adsorption isotherms ( 87 K) were simulated via the hyper- parallel tempering Monte Carlo simulation method. The isotherms obtained in this way were described by widely applied methods of microporous carbon characterisation, i. e. Nguyen and Do, Horvath - Kawazoe, high- resolution alpha(a)s plots, adsorption potential distributions and the Dubinin - Astakhov ( DA) equation. From simulated isotherms described by the DA equation, the average micropore diameters were calculated using empirical relationships proposed by different authors and they were compared with those from the BG method.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The adsorption kinetics curves of poly(xylylidene tetrahydrothiophenium chloride) (PTHT), a poly-p-phenylenevinylene (PPV) precursor, and the sodium salt of dodecylbenzene sulfonic acid (DBS), onto (PTHT/DBS)(n) layer-by-layer (LBL) films were characterized by means of UV-vis spectroscopy. The amount of PTHT/DBS and PTHT adsorbed on each layer was shown to be practically independent of adsorption time. A Langmuir-type metastable equilibrium model was used to adjust the adsorption isotherms data and to estimate adsorption/desorption coefficients ratios, k = k(ads)/k(des), values of 2 x 10(5) and 4 x 10(6) for PTHT and PTHT/DBS layers, respectively. The desorption coefficient has been estimated, using literature values for poly(o-methoxyaniline) desorption coefficient, as was found to be in the range of 10(-9) to 10(-6) s(-1), indicating that quasi equilibrium is rapidly attained.