941 resultados para Adaptive control charts
Resumo:
Feasibility of nonlinear and adaptive control methodologies in multivariable linear time-invariant systems with state-space realization (A, B, C) is apparently limited by the standard strictly positive realness conditions that imply that the product CB must be positive definite symmetric. This paper expands the applicability of the strictly positive realness conditions used for the proofs of stability of adaptive control or control with uncertainty by showing that the not necessarily symmetric CB is only required to have a diagonal Jordan form and positive eigenvalues. The paper also shows that under the new condition any minimum-phase systems can be made strictly positive real via constant output feedback. The paper illustrates the usefulness of these extended properties with an adaptive control example. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
An economic model including the labor resource and the process stage configuration is proposed to design g charts allowing for all the design parameters to be varied in an adaptive way. A random shift size is considered during the economic design selection. The results obtained for a benchmark of 64 process stage scenarios show that the activities configuration and some process operating parameters influence the selection of the best control chart strategy: to model the random shift size, its exact distribution can be approximately fitted by a discrete distribution obtained from a relatively small sample of historical data. However, an accurate estimation of the inspection costs associated to the SPC activities is far from being achieved. An illustrative example shows the implementation of the proposed economic model in a real industrial case. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The T-2 and the generalized variance vertical bar S vertical bar charts are used for monitoring the mean vector and the covariance matrix of multivariate processes. In this article, we propose for bivariate processes the use of the T-2 and the VMAX charts. The points plotted on the VMAX chart correspond to the maximum of the sample variances of the two quality characteristics. The reason to consider the VMAX statistic instead of the generalized variance vertical bar S vertical bar is the user's familiarity with the computation of simple sample variances; we can't say the same with regard to the computation of the generalized variance vertical bar S vertical bar.
Resumo:
In this article, we consider the synthetic control chart with two-stage sampling (SyTS chart) to control bivariate processes. During the first stage, one item of the sample is inspected and two correlated quality characteristics (x;y) are measured. If the Hotelling statistic T1 2 for these individual observations of (x;y) is lower than a specified value UCL 1 the sampling is interrupted. Otherwise, the sampling goes on to the second stage, where the remaining items are inspected and the Hotelling statistic T2 2 for the sample means of (x;y) is computed. When the statistic T2 2 is larger than a specified value UCL2, the sample is classified as nonconforming. According to the synthetic control chart procedure, the signal is based on the number of conforming samples between two neighbor nonconforming samples. The proposed chart detects process disturbances faster than the bivariate charts with variable sample size and it is from the practical viewpoint more convenient to administer.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A model for the joint economic design of X̄ and R control charts is developed. This model assumes that the process is subject to two assignable causes. One assignable cause shifts the process mean; the other shifts the process variance. The occurrence of the assignable cause of one kind does not block the occurrence of the assignable cause of another kind. Consequently, a second process parameter can go out-of-control after the first process parameter has gone out-of-control. A numerical study of the cost surface to the model considered has revealed that it is convex, at least in the interest region.
Resumo:
Electrical Power Assisted Steering system (EPAS) will likely be used on future automotive power steering systems. The sinusoidal brushless DC (BLDC) motor has been identified as one of the most suitable actuators for the EPAS application. Motor characteristic variations, which can be indicated by variations of the motor parameters such as the coil resistance and the torque constant, directly impart inaccuracies in the control scheme based on the nominal values of parameters and thus the whole system performance suffers. The motor controller must address the time-varying motor characteristics problem and maintain the performance in its long service life. In this dissertation, four adaptive control algorithms for brushless DC (BLDC) motors are explored. The first algorithm engages a simplified inverse dq-coordinate dynamics controller and solves for the parameter errors with the q-axis current (iq) feedback from several past sampling steps. The controller parameter values are updated by slow integration of the parameter errors. Improvement such as dynamic approximation, speed approximation and Gram-Schmidt orthonormalization are discussed for better estimation performance. The second algorithm is proposed to use both the d-axis current (id) and the q-axis current (iq) feedback for parameter estimation since id always accompanies iq. Stochastic conditions for unbiased estimation are shown through Monte Carlo simulations. Study of the first two adaptive algorithms indicates that the parameter estimation performance can be achieved by using more history data. The Extended Kalman Filter (EKF), a representative recursive estimation algorithm, is then investigated for the BLDC motor application. Simulation results validated the superior estimation performance with the EKF. However, the computation complexity and stability may be barriers for practical implementation of the EKF. The fourth algorithm is a model reference adaptive control (MRAC) that utilizes the desired motor characteristics as a reference model. Its stability is guaranteed by Lyapunov’s direct method. Simulation shows superior performance in terms of the convergence speed and current tracking. These algorithms are compared in closed loop simulation with an EPAS model and a motor speed control application. The MRAC is identified as the most promising candidate controller because of its combination of superior performance and low computational complexity. A BLDC motor controller developed with the dq-coordinate model cannot be implemented without several supplemental functions such as the coordinate transformation and a DC-to-AC current encoding scheme. A quasi-physical BLDC motor model is developed to study the practical implementation issues of the dq-coordinate control strategy, such as the initialization and rotor angle transducer resolution. This model can also be beneficial during first stage development in automotive BLDC motor applications.
Resumo:
Bovine spongiform encephalopathy (BSE) rapid tests and routine BSE-testing laboratories underlie strict regulations for approval. Due to the lack of BSE-positive control samples, however, full assay validation at the level of individual test runs and continuous monitoring of test performance on-site is difficult. Most rapid tests use synthetic prion protein peptides, but it is not known to which extend they reflect the assay performance on field samples, and whether they are sufficient to indicate on-site assay quality problems. To address this question we compared the test scores of the provided kit peptide controls to those of standardized weak BSE-positive tissue samples in individual test runs as well as continuously over time by quality control charts in two widely used BSE rapid tests. Our results reveal only a weak correlation between the weak positive tissue control and the peptide control scores. We identified kit-lot related shifts in the assay performances that were not reflected by the peptide control scores. Vice versa, not all shifts indicated by the peptide control scores indeed reflected a shift in the assay performance. In conclusion these data highlight that the use of the kit peptide controls for continuous quality control purposes may result in unjustified rejection or acceptance of test runs. However, standardized weak positive tissue controls in combination with Shewhart-CUSUM control charts appear to be reliable in continuously monitoring assay performance on-site to identify undesired deviations.
Resumo:
The objective of this paper is to design a path following control system for a car-like mobile robot using classical linear control techniques, so that it adapts on-line to varying conditions during the trajectory following task. The main advantages of the proposed control structure is that well known linear control theory can be applied in calculating the PID controllers to full control requirements, while at the same time it is exible to be applied in non-linear changing conditions of the path following task. For this purpose the Frenet frame kinematic model of the robot is linearised at a varying working point that is calculated as a function of the actual velocity, the path curvature and kinematic parameters of the robot, yielding a transfer function that varies during the trajectory. The proposed controller is formed by a combination of an adaptive PID and a feed-forward controller, which varies accordingly with the working conditions and compensates the non-linearity of the system. The good features and exibility of the proposed control structure have been demonstrated through realistic simulations that include both kinematics and dynamics of the car-like robot.
Resumo:
This paper presents an adaptive control for the auxiliary circuit, called ARCN (Auxiliary Resonant Commutating Network), used to achieve ZVS in full active bridge converters under a wide load range. Depending on the load conditions, the proposed control adapts the timing of the ARCN to minimize the losses. The principle of operation and implementation considerations are presented for a three phase full active bridge converter, proposing different methods to implement the control according to the specifications. The experimental results shown verify the proposed methodology.
Resumo:
Diverse roles in cellular functions have been ascribed to nitric oxide (NO), and its involvement in induction of long-term depression in cerebellar Purkinje cells has been demonstrated. Manipulations of NO concentration or its synthesis in cerebellar tissues therefore provide a means for investigating roles of NO in cerebellar functions at both cellular and behavioral levels. We tested adaptive control of locomotion to perturbation in cats, and found that this form of motor learning was abolished by application of either an inhibitor of NO synthase or a scavenger of NO to the cerebellar cortical locomotion area. This finding supports the view that NO in the cerebellum plays a key role in motor learning.
Resumo:
The countermanding paradigm was designed to investigate the ability to cancel a prepotent response when a stop signal is presented and allows estimation of the stop signal response time (SSRT), an otherwise unobservable behaviour. Humans exhibit adaptive control of behaviour in the countermanding task, proactively lengthening response time (RT) in expectation of stopping and reactively lengthening RT following stop trials or errors. Human performance changes throughout the lifespan, with longer RT, SSRT and greater emphasis on post-error slowing reported for older compared to younger adults. Inhibition in the task has generally been improved by drugs that increase extracellular norepinephrine. The current thesis examined a novel choice response countermanding task in rats to explore whether rodent countermanding performance is a suitable model for the study of adaptive control of behaviour, lifespan changes in behavioural control and the role of neurotransmitters in these behaviours. Rats reactively adjusted RT in the countermanding task, shortening RT after consecutive correct go trials and lengthening RT following non-cancelled, but not cancelled stop trials, in sessions with a 10 s, but not a 1 s post-error timeout interval. Rats proactively lengthened RT in countermanding task sessions compared to go trial-only sessions. Together, these findings suggest that rats strategically lengthened RT in the countermanding task to improve accuracy and avoid longer, unrewarded timeout intervals. Next, rats exhibited longer RT and relatively conserved post-error slowing, but no significant change in SSRT when tested at 12, compared to 7 months of age, suggesting that rats exhibit changes in countermanding task performance with aging similar to those observed in humans. Finally, acute administration of yohimbine (1.25, 2.5 mg/kg) and d-amphetamine (0.25, 0.5 mg/kg), which putatively increase extracellular norepinephrine and dopamine respectively, resulted in RT shortening, baseline-dependent effects on SSRT, and attenuated adaptive RT adjustments in rats in the case of d-amphetamine. These findings suggest that dopamine and norepinephrine encouraged motivated, reward-seeking behaviour and supported inhibitory control in an inverted-U-like fashion. Taken together, these observations validate the rat countermanding task for further study of the neural correlates and neurotransmitters mediating adaptive control of behaviour and lifespan changes in behavioural control.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.