990 resultados para Active tuberculosis


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract Background Assuming a higher risk of latent tuberculosis (TB) infection in the population of Rio de Janeiro, Brazil, in October of 1998 the TB Control Program of Clementino Fraga Filho Hospital (CFFH) routinely started to recommend a two-step tuberculin skin test (TST) in contacts of pulmonary TB cases in order to distinguish a boosting reaction due to a recall of delayed hypersensitivity previously established by infection with Mycobacterium tuberculosis (M.tb) or BCG vaccination from a tuberculin conversion. The aim of this study was to assess the prevalence of boosted tuberculin skin tests among contacts of individuals with active pulmonary tuberculosis (TB). Methods Retrospective cohort of TB contacts ≥ 12 years old who were evaluated between October 1st, 1998 and October 31st 2001. Contacts with an initial TST ≤ 4 mm were considered negative and had a second TST applied after 7–14 days. Boosting reaction was defined as a second TST ≥ 10 mm with an increase in induration ≥ 6 mm related to the first TST. All contacts with either a positive initial or repeat TST had a chest x-ray to rule out active TB disease, and initially positive contacts were offered isoniazid preventive therapy. Contacts that boosted did not receive treatment for latent TB infection and were followed for 24 months to monitor the development of TB. Statistical analysis of dichotomous variables was performed using Chi-square test. Differences were considered significant at a p < 0.05. Results Fifty four percent (572/1060) of contacts had an initial negative TST and 79% of them (455/572) had a second TST. Boosting was identified in 6% (28/455). The mean age of contacts with a boosting reaction was 42.3 ± 21.1 and with no boosting was 28.7 ± 21.7 (p = 0.01). Fifty percent (14/28) of individuals whose test boosted met criteria for TST conversion on the second TST (increase in induration ≥ 10 mm). None of the 28 contacts whose reaction boosted developed TB disease within two years following the TST. Conclusion The low number of contacts with boosting and the difficulty in distinguishing boosting from TST conversion in the second TST suggests that the strategy of two-step TST testing among contacts of active TB cases may not be useful. However, this conclusion must be taken with caution because of the small number of subjects followed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Iron is an essential nutrient for the survival of most organisms and has played a central role in the virulence of many infectious disease pathogens. Mycobacterial IdeR is an iron-dependent repressor that shows 80% identity in the functional domains with its corynebacterial homologue, DtxR (diphtheria toxin repressor). We have transformed Mycobacterium tuberculosis with a vector expressing an iron-independent, positive dominant, corynebacterial dtxR hyperrepressor, DtxR(E175K). Western blots of whole-cell lysates of M. tuberculosis expressing the dtxR(E175K) gene revealed the stable expression of the mutant protein in mycobacteria. BALB/c mice were infected by tail vein injection with 2 × 105 organisms of wild type or M. tuberculosis transformed with the dtxR mutant. At 16 weeks, there was a 1.2 log reduction in bacterial survivors in both spleen (P = 0.0002) and lungs (P = 0.006) with M. tuberculosis DtxR(E175K). A phenotypic difference in colonial morphology between the two strains also was noted. A computerized search of the M. tuberculosis genome for the palindromic consensus sequence to which DtxR and IdeR bind revealed six putative “iron boxes” within 200 bp of an ORF. Using a gel-shift assay we showed that purified DtxR binds to the operator region of five of these boxes. Attenuation of M. tuberculosis can be achieved by the insertion of a plasmid containing a constitutively active, iron-insensitive repressor, DtxR(E175K), which is a homologue of IdeR. Our results strongly suggest that IdeR controls genes essential for virulence in M. tuberculosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heat shock promoters of mycobacteria are strong promoters that become rapidly upregulated during macrophage infection and thus serve as valuable candidates for expressing foreign antigens in recombinant BCG vaccine. In the present study, a new heat shock promoter controlling the expression of the groESL1 operon was identified and characterized. Mycobacterium tuberculosis groESL1 operon codes for the immunodominant 10 kDa (Rv3418c, GroES/Cpn10/Hsp10) and 60 kDa (Rv3417c, GroEL1/Cpn60.1/Hsp60) heat shock proteins. The basal promoter region was 115 bp, while enhanced activity was seen only with a 277-bp fragment. No promoter element was seen in the groES-groEL1 intergenic region. This operon codes for a bicistronic mRNA transcript as determined by reverse transcriptase-PCR and Northern blot analysis. Primer extension analysis identified two transcriptional start sites (TSSs) TSS1 (-236) and TSS2 (-171), out of which one (TSS2) was heat inducible. The groE promoter was more active than the groEL2 promoter in Mycobacterium smegmatis. Further, it was found to be differentially regulated under stress conditions, while the groEL2 promoter was constitutive.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An efficient in vitro amino acid-incorporating system from Mycobacterium tuberculosis H37Rv was standardized. Ribonucleic acid (RNA) isolated from phage-infected M. smegmatis cells served as natural messenger RNA and directed the incorporation of 14C-amino acids into protein. The effects of various antitubercular drugs and “known inhibitors” of protein synthesis on amino acid incorporation were studied. Antibiotics like chloramphenicol and tetracycline inhibited mycobacterial protein synthesis, though they failed to prevent the growth of the organism. This failure was shown to be due to the impermeability of mycobacteria to these drugs by use of “membrane-active” agents along with the antibiotics in growth inhibition studies. Several independent streptomycin-resistant mutants of M. tuberculosis H37Rv were isolated. Streptomycin inhibited the incorporation of 14C-amino acids into proteins by whole cells of a streptomycin-susceptible strain by more than 90%, whereas very little or no inhibition was observed in either high-level or low-level streptomycin-resistant strains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The RecA-like proteins constitute a group of DNA strand transfer proteins ubiquitous in eubacteria, eukarya, and archaea. However, the functional relationship among RecA proteins is poorly understood. For instance, Mycobacterium tuberculosis RecA is synthesized as a large precursor, which undergoes an unusual protein-splicing reaction to generate an active form. Whereas the precursor was inactive, the active form promoted DNA strand transfer less efficiently compared to EcRecA. Furthermore, gene disruption studies have indicated that the frequencies of allele exchange are relatively lower in Mycobacterium tuberculosis compared to Mycobacterium smegmatis. The mechanistic basis and the factors that contribute to differences in allele exchange remain to be understood. Here, we show that the extent of DNA strand transfer promoted by the M. smegmatis RecA in vitro differs significantly from that of M. tuberculosis RecA. Importantly, M. smegmatis RecA by itself was unable to promote strand transfer, but cognate or noncognate SSBs rendered it efficient even when added prior to RecA. In the presence of SSB, MsRecA or MtRecA catalyzed strand transfer between ssDNA and varying lengths of linear duplex DNA with distinctly different pH profiles. The factors that were able to suppress the formation of DNA networks greatly stimulated strand transfer reactions promoted by MsRecA or MtRecA. Although the rate and pH profiles of dATP hydrolysis catalyzed by MtRecA and MsRecA were similar, only MsRecA was able to couple dATP hydrolysis to DNA strand transfer. Together, these results provide insights into the functional diversity in DNA strand transfer promoted by RecA proteins of pathogenic and nonpathogenic species of mycobacteria.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mycobacterium tuberculosis (Mtb), a dreaded pathogen, has a unique cell envelope composed of high fatty acid content that plays a crucial role in its pathogenesis. Acetyl Coenzyme A Carboxylase (ACC), an important enzyme that catalyzes the first reaction of fatty acid biosynthesis, is biotinylated by biotin acetyl-CoA carboxylase ligase (BirA). The ligand-binding loops in all known apo BirAs to date are disordered and attain an ordered structure only after undergoing a conformational change upon ligand-binding. Here, we report that dehydration of Mtb-BirA crystals traps both the apo and active conformations in its asymmetric unit, and for the first time provides structural evidence of such transformation. Recombinant Mtb-BirA was crystallized at room temperature, and diffraction data was collected at 295 K as well as at 120 K. Transfer of crystals to paraffin and paratone-N oil (cryoprotectants) prior to flash-freezing induced lattice shrinkage and enhancement in the resolution of the X-ray diffraction data. Intriguingly, the crystal lattice rearrangement due to shrinkage in the dehydrated Mtb-BirA crystals ensued structural order of otherwise flexible ligand-binding loops L4 and L8 in apo BirA. In addition, crystal dehydration resulted in a shift of similar to 3.5 angstrom in the flexible loop L6, a proline-rich loop unique to Mtb complex as well as around the L11 region. The shift in loop L11 in the C-terminal domain on dehydration emulates the action responsible for the complex formation with its protein ligand biotin carboxyl carrier protein (BCCP) domain of ACCA3. This is contrary to the involvement of loop L14 observed in Pyrococcus horikoshii BirA-BCCP complex. Another interesting feature that emerges from this dehydrated structure is that the two subunits A and B, though related by a noncrystallographic twofold symmetry, assemble into an asymmetric dimer representing the ligand-bound and ligand-free states of the protein, respectively. In-depth analyses of the sequence and the structure also provide answers to the reported lower affinities of Mtb-BirA toward ATP and biotin substrates. This dehydrated crystal structure not only provides key leads to the understanding of the structure/function relationships in the protein in the absence of any ligand-bound structure, but also demonstrates the merit of dehydration of crystals as an inimitable technique to have a glance at proteins in action.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

After initiation of transcription, a number of proteins participate during elongation and termination modifying the properties of the RNA polymerase (RNAP). Gre factors are one such group conserved across bacteria. They regulate transcription by projecting their N-terminal coiled-coil domain into the active center of RNAP through the secondary channel and stimulating hydrolysis of the newly synthesized RNA in backtracked elongation complexes. Rv1080c is a putative gre factor (MtbGre) in the genome of Mycobacterium tuberculosis. The protein enhanced the efficiency of promoter clearance by lowering abortive transcription and also rescued arrested and paused elongation complexes on the GC rich mycobacterial template. Although MtbGre is similar in domain organization and shares key residues for catalysis and RNAP interaction with the Gre factors of Escherichia coli, it could not complement an E. coli gre deficient strain. Moreover, MtbGre failed to rescue E. coli RNAP stalled elongation complexes, indicating the importance of specific protein-protein interactions for transcript cleavage. Decrease in the level of MtbGre reduced the bacterial survival by several fold indicating its essential role in mycobacteria. Another Gre homolog, Rv3788 was not functional in transcript cleavage activity indicating that a single Gre is sufficient for efficient transcription of the M. tuberculosis genome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The crystal structure of Rv0098, a long-chain fatty acyl-CoA thioesterase from Mycobacterium tuberculosis with bound dodecanoic acid at the active site provided insights into the mode of substrate binding but did not reveal the structural basis of substrate specificities of varying chain length. Molecular dynamics studies demonstrated that certain residues of the substrate binding tunnel are flexible and thus modulate the length of the tunnel. The flexibility of the loop at the base of the tunnel was also found to be important for determining the length of the tunnel for accommodating appropriate substrates. A combination of crystallographic and molecular dynamics studies thus explained the structural basis of accommodating long chain substrates by Rv0098 of M. tuberculosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adenylosuccinate lyase (ASL), an enzyme involved in purine biosynthesis, has been recognized as a drug target against microbial infections. In the present study, ASL from Mycobacteriumsmegmatis (MsASL) and Mycobacteriumtuberculosis (MtbASL) were cloned, purified and crystallized. The X-ray crystal structure of MsASL was determined at a resolution of 2.16 angstrom. It is the first report of an apo-ASL structure with a partially ordered active site C3 loop. Diffracting crystals of MtbASL could not be obtained and a model for its structure was derived using MsASL as a template. These structures suggest that His149 and either Lys285 or Ser279 of MsASL are the residues most likely to function as the catalytic acid and base, respectively. Most of the active site residues were found to be conserved, with the exception of Ser148 and Gly319 of MsASL. Ser148 is structurally equivalent to a threonine in most other ASLs. Gly319 is replaced by an arginine residue in most ASLs. The two enzymes were catalytically much less active compared to ASLs from other organisms. Arg319Gly substitution and reduced flexibility of the C3 loop might account for the low catalytic activity of mycobacterial ASLs. The low activity is consistent with the slow growth rate of Mycobacteria and their high GC containing genomes, as well as their dependence on other salvage pathways for the supply of purine nucleotides. Structured digital abstract andby()

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Mycobacterium tuberculosis Rv1027c-Rv1028c genes are predicted to encode KdpDE two component system, which is highly conserved across all bacterial species. Here, we show that the system is functionally active and KdpD sensor kinase undergoes autophosphorylation and transfers phosphoryl group to KdpE, response regulator protein. We identified His(642) and Asp(52) as conserved phosphorylation sites in KdpD and KdpE respectively and by SPR analysis confirmed the physical interaction between them. KdpD was purified with prebound divalent ions and their importance in phosphorylation was established using protein refolding and ion chelation approaches. Genetically a single transcript encoded both KdpD and KdpE proteins. Overall, we report that M. tuberculosis KdpDE system operates like a canonical two component system. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the crystal structure of the first prokaryotic aspartic proteinase-like domain identified in the genome of Mycobacterium tuberculosis. A search in the genomes of Mycobacterium species showed that the C-terminal domains of some of the PE family proteins contain two classic DT/SG motifs of aspartic proteinases with a low overall sequence similarity to HIV proteinase. The three-dimensional structure of one of them, Rv0977 (PE_PGRS16) of M. tuberculosis revealed the characteristic pepsinf-old and catalytic site architecture. However, the active site was completely blocked by the N-terminal His-tag. Surprisingly, the enzyme was found to be inactive even after the removal of the N-terminal His-tag. A comparison of the structure with pepsins showed significant differences in the critical substrate binding residues and in the flap tyrosine conformation that could contribute to the lack of proteolytic activity of Rv0977. (C) 2013 The Authors. Published by Elsevier B.V. on behalf of Federation of European Biochemical Societies. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

FtsE is one of the earliest cell division proteins that assembles along with FtsX at the mid-cell site during cell division in Escherichia coli. Both these proteins are highly conserved across diverse bacterial genera and are predicted to constitute an ABC transporter type complex, in which FtsE is predicted to bind ATP and hydrolyse it, and FtsX is predicted to be an integral membrane protein. We had earlier reported that the MtFtsE of the human pathogen, Mycobacterium tuberculosis, binds ATP and interacts with MtFtsX on the cell membrane of M. tuberculosis and E. coli. In this study, we demonstrate that MtFtsE is an ATPase, the active form of which is a dimer, wherein the participating monomers are held together by non-covalent interactions, with the Cys84 of each monomer present at the dimer interface. Under oxidising environment, the dimer gets stabilised by the formation of Cys84-Cys84 disulphide bond. While the recombinant MtFtsE forms a dimer on the membrane of E. coli, the native MtFtsE seems to be in a different conformation in the M. tuberculosis membrane. Although disulphide bridges were not observed on the cytoplasmic side (reducing environment) of the membrane, the two participating monomers could be isolated as dimers held together by non-covalent interactions. Taken together, these findings show that MtFtsE is an ATPase in the non-covalent dimer form, with the Cys84 of each monomer present in the reduced form at the dimer interface, without participating in the dimerisation or the catalytic activity of the protein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transcriptional regulation enables adaptation in bacteria. Typically, only a few transcriptional events are well understood, leaving many others unidentified. The recent genome-wide identification of transcription factor binding sites in Mycobacterium tuberculosis has changed this by deciphering a molecular road-map of transcriptional control, indicating active events and their immediate downstream effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Most individuals infected with Mycobacterium tuberculosis do not develop tuberculosis (TB) and can be regarded as being protected by an appropriate immune response to the infection. The characterization of the immune responses of individuals with latent TB may thus be helpful in the definition of correlates of protection and the development of new vaccine strategies. The highly protective antigen heparin-binding hemagglutinin (HBHA) induces strong interferon (IFN)- gamma responses during latent, but not active, TB. Because of the recently recognized importance of CD8(+) T lymphocytes in anti-TB immunity, we characterized the CD8(+) T lymphocyte responses to HBHA in subjects with latent TB. RESULTS: HBHA-specific CD8(+) T lymphocytes expressed memory cell markers and synthesized HBHA-specific IFN- gamma .They also restricted mycobacterial growth and expressed cytotoxicity by a granule-dependent mechanism. This activity was associated with the intracellular expression of HBHA-induced perforin. Surprisingly, the perforin-producing CD8(+) T lymphocytes were distinct from the IFN- gamma -producing CD8(+) T lymphocytes. CONCLUSION: During latent TB, the HBHA-specific CD8(+) T lymphocyte population expresses all 3 effector functions associated with CD8(+) T lymphocyte-mediated protective immune mechanisms, which supports the notion that HBHA may be protective in humans and suggests that markers of HBHA-specific CD8(+) T lymphocyte responses may be useful in the monitoring of protection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: The detection of latent tuberculosis infection (LTBI) is a major component of tuberculosis (TB) control strategies. In addition to the tuberculosis skin test (TST), novel blood tests, based on in vitro release of IFN-gamma in response to Mycobacterium tuberculosis-specific antigens ESAT-6 and CFP-10 (IGRAs), are used for TB diagnosis. However, neither IGRAs nor the TST can separate acute TB from LTBI, and there is concern that responses in IGRAs may decline with time after infection. We have therefore evaluated the potential of the novel antigen heparin-binding hemagglutinin (HBHA) for in vitro detection of LTBI. METHODOLOGY AND PRINCIPAL FINDINGS: HBHA was compared to purified protein derivative (PPD) and ESAT-6 in IGRAs on lymphocytes drawn from 205 individuals living in Belgium, a country with low TB prevalence, where BCG vaccination is not routinely used. Among these subjects, 89 had active TB, 65 had LTBI, based on well-standardized TST reactions and 51 were negative controls. HBHA was significantly more sensitive than ESAT-6 and more specific than PPD for the detection of LTBI. PPD-based tests yielded 90.00% sensitivity and 70.00% specificity for the detection of LTBI, whereas the sensitivity and specificity for the ESAT-6-based tests were 40.74% and 90.91%, and those for the HBHA-based tests were 92.06% and 93.88%, respectively. The QuantiFERON-TB Gold In-Tube (QFT-IT) test applied on 20 LTBI subjects yielded 50% sensitivity. The HBHA IGRA was not influenced by prior BCG vaccination, and, in contrast to the QFT-IT test, remote (>2 years) infections were detected as well as recent (<2 years) infections by the HBHA-specific test. CONCLUSIONS: The use of ESAT-6- and CFP-10-based IGRAs may underestimate the incidence of LTBI, whereas the use of HBHA may combine the operational advantages of IGRAs with high sensitivity and specificity for latent infection.